Statistical Properties of a Linear Stochastic System*

George W. Schultz
Division of Science, St. Petersherg Junior College, Clearwater Campus, Clearwater, Florida 33515.

AND

Chris P. Tsokos and A. N. V. Rao

Department of Mathematics, University of South Florida, Tampa, Florida 33620

Abstract

In this paper a random linear system of the form of $y\left(t ; \omega=\int_{\mathrm{c}}^{t} K(t, \tau ; \omega) x(\tau ; \omega) d \tau\right.$ is studied, where the kernel is a stochastic process defined on a probability space. The concept of the modified characteristic function for the output process is introduced. These characteristic functions are used to identify the distribution of the output process over certain subsets of the probability space, Ω, in order to study the statistical properties of the process. Several examples are given to illustrate the usefulness of the resulting theory. These results extend the previous theory of random linear systems, in that until now, the kernel was deterministic in nature.

1. Introduction

In this paper we shall study a random linear system of the form

$$
\begin{equation*}
y(t ; \omega)=\int_{0}^{t} K(t, \tau ; \omega) x(\tau ; \omega) d \tau \tag{1.1}
\end{equation*}
$$

where $K(t, \tau ; \omega)$ is a stochastic impulse transfer function for $\omega \in \Omega$, a discrete probability space, $x(t ; \omega)$ is the a.s. continuous random input, $y(t ; \omega)$ is the output process, and the integration is on sample paths. Such a system is discribed by Fig. 1. Utilizing the concept of the modified characteristic functions, we shall obtain or approximate the form of the characteristic function, $\phi_{y}(s)$, for the output process, $y(t ; \omega)$. Kuznetsov et al. (1965) have recently studied a similar system; however, the kernel was deterministic in nature. Several examples will be given to illustrate the usefulness of the resulting theory.

[^0]

In order to begin the theoretical development for the above problem, we shall first present some definitions and lemmas that are essential in fulfilling the aims of this paper.

As is well known in statistics, the moments are a set of descriptive constants of a distribution which are useful in measuring its properties. Another set of constants, called cumulants (semi-invariants, generalized correlation functions) has properties which are sometimes more useful from the theoretical standpoint (Kendall and Stuart, 1943).

Definition 1.1. The cumulants $R_{1}^{(1)}, R_{2}^{(1)}, \ldots, R_{r}^{(1)}, \ldots$, are defined by the identity in s,

$$
\begin{equation*}
\phi_{X}(s)=\exp \left\{i R_{1}^{(1)} s+\frac{i^{2}}{2!} R_{2}^{(1)} s^{2}+\cdots+\frac{i^{r}}{r!} R_{r}^{(1)} s^{r}+\cdots\right\}, \tag{1.2}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\ln \phi_{X}(s)=i R_{1}^{(1)} s+\frac{i^{2}}{2!} R_{2}^{(1)} s^{2}+\cdots+\frac{i^{r}}{r!} R_{r}^{(1)} s^{r}+\cdots \tag{1.3}
\end{equation*}
$$

where $\phi_{X}(s)$ is the characteristic function of the random variable X. Paley and Winer (1934) have shown that if $\phi_{X}(s)$ diminishes more quickly with increasing $|X|$ than the exponential $e^{-\lambda|X|}$, then the series in (1.3) converges for $|s|<\lambda$. The above discussion can be extended to the multivariate case easily. For example, in the bivariate case, if the decrease in the joint probability density function is no slower than the exponential function $e^{\lambda_{1}\left|X_{1}\right|+\lambda_{2}\left|X_{2}\right| \text {, the logarithm }}$ of the characteristic function of the random vector $\left(X_{1}, X_{2}\right)$ can be expanded as

$$
\begin{align*}
\ln \phi_{X_{1} x_{2}}\left(s_{1}, s_{2}\right)= & i\left[R_{10}^{(2)} s_{1}+R_{01}^{(2)} s_{2}\right] \\
& +\left(i^{2} / 2!\right)\left[R_{20}^{(2)} s_{1}^{2}+2 R_{11}^{(2)} s_{1} s_{2}+R_{02}^{(2)} s_{2}^{2}\right]+\cdots \tag{1.4}
\end{align*}
$$

We now state a lemma concerning the characteristic function, the proof of which can be found in Tsokos (1972).

Lemma 1.1. Given the n-dimensional random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with the joint probability density function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the characteristic function
$\phi_{X_{1} \cdots \chi_{n}}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, the multivariate random variable $\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)$ defined by

$$
Y_{i}=\sum_{j=1}^{n} \alpha_{i j} X_{j}, \quad i=1,2, \ldots, m
$$

where the $\alpha_{i j}$'s are constants has a characteristic function

$$
\phi_{Y_{1} Y_{2} \cdots Y_{m}}\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{m}^{\prime}\right)=\phi_{X_{1} X_{2} \cdots X_{n}}\left(\sum_{i=1}^{m} s_{i}^{\prime} \alpha_{i 1}, \sum_{i=1}^{m} s_{i}^{\prime} \alpha_{i 2}, \ldots, \sum_{i=1}^{m} s_{i}^{\prime} \alpha_{i n}\right)
$$

2. The Modified Characteristic Function

Given the system (1.1) with an input process $x(t ; \omega)$ whose statistical properties are known, we wish to obtain knowledge of the statistical behavior of the output process $y(t ; \omega)$.

To the knowledge of the authors in previous research on the subject, the kernel has been treated as a deterministic function. We shall here consider the random kernel $K(t, \tau ; \omega)$ to be defined on a probability space Ω in the following manner. Ω is partitioned into a finite number of disjoint measurable sets $A_{1}, A_{2}, \ldots, A_{q}$ such that $\bigcup_{r=1}^{q} A_{r}=\Omega, P\left(A_{r}\right)>0$, and for $\omega \in A_{r}, r=1,2, \ldots, q, K(t ; \tau ; \omega)$ behaves deterministically. That is, the sample paths of $K(t, \tau ; \omega)$ are the same for all $\omega \in A_{r}$. We shall denote $K(t, \tau ; \omega)$ for $\omega \in A_{r}$ by $K_{r}(t, \tau)$.

Kuznetsov et al. (1965), used characteristic functions to develop the theory for a nonstochastic kernel. We shall use a modified characteristic function approach for a stochastic case.

Definition 2.1. A modified characteristic function $\phi_{X}^{(r)}(s)$ for the random variable X is defined by

$$
\phi_{X}^{(r)}(s)=E_{r}\left\{e^{i s X}\right\}=\int_{A_{\boldsymbol{r}}} e^{i s x(\omega)} d P(\omega)
$$

for $\omega \in A_{r}$.
A modified characteristic function for the multivariate case is defined analogously.

A question we must answer is how will the series expansion for the logarithm of $\phi_{X}^{(r)}(s)$ differ from that of $\ln \phi_{X}(s)$? To answer this question we proceed as follows:

$$
\begin{align*}
\phi_{X}^{(r)}(s) & =E_{r}\left\{e^{i s X}\right\} \\
& =E_{r}\left\{1+i s X+\frac{i^{2}}{2!} s^{2} X^{2}+\frac{i^{3}}{3!} s^{3} X^{3}+\cdots\right\} \tag{2.1}\\
& =E_{r}\{1\}+i s E_{r}\{X\}+\frac{i^{2}}{2!} s^{2} E_{r}\left\{X^{2}\right\}+\cdots
\end{align*}
$$

We shall assume that $E\left\{X^{n}\right\}=\mu_{n}<\infty$ for all n and that the series in (2.1) converges absolutely near $s=0$. Set $E_{r}\{1\}=a,(0<a<1)$. Then Eq. (2.1) takes the form

$$
\begin{align*}
\phi_{X}^{(r)}(s) & =a+i s E_{r}\{X\}+\frac{i^{2}}{2!} s^{2} E_{r}\left\{X^{2}\right\}+\cdots \\
& =a\left[1+\frac{i E_{r}\{X\}}{a} s+\frac{i^{2}}{s!} \frac{E_{r}\left\{X^{2}\right\}}{a} s^{2}+\cdots\right], \tag{2.2}
\end{align*}
$$

and Eq. (2.2) yields

$$
\begin{equation*}
\ln \phi_{X}^{(r)}(s)=\ln a+\ln \left\{1+\left(\frac{i E_{r}\{X\}}{a} s+\frac{i^{2} E_{r}\left\{X^{2}\right\}}{2!a} s^{2}+\cdots\right)\right\} . \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
z=\frac{i E_{r}\{X\}}{a} s+\frac{i^{2}}{2!} \frac{E_{r}\left\{X^{2}\right\}}{a} s^{2}+\cdots . \tag{2.4}
\end{equation*}
$$

Then restricting s close enough to the origin so that $|z|<1$, we obtain

$$
\begin{equation*}
\ln \phi_{X}^{(r)}(s)=\ln a+z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots \tag{2.5}
\end{equation*}
$$

Collecting powers of s upon expanding the powers of z in Eq. (2.5) we obtain

$$
\begin{equation*}
\ln \phi_{X}^{(r)}(s)=\ln a+i R_{r, 1}^{(1)} s+\frac{i^{2}}{2} R_{r, 2}^{(1)} s^{2}+\cdots \tag{2.6}
\end{equation*}
$$

Thus, we state
Definition 2.2. The coefficients $R_{r, 1}^{(1)}, R_{r, 2}^{(1)}, \ldots, R_{r, n}^{(1)}, \ldots$, of the powers of s in Eq. (2.6) are the modified cumulants of the probability distribution of the random variable X. We shall denote "In. a "' appearing in Eq. (2.6) by $R_{r, 0}^{(1)}$. For each $t \in R^{+}$, the modified cumulants of the random variable $X(t ; \omega)$ will be denoted by $R_{r, 0}^{(1)}(t), R_{r, 1}^{(1)}(t)$, etc. For the multivariate case, modified correlation of the random vectors $X\left(t_{1} ; \omega\right), X\left(t_{2} ; \omega\right), \ldots, X\left(t_{n} ; \omega\right)$ will be denoted by $R_{r, 0}^{(1)}\left(t_{1}, t_{2}, t_{r}\right)$, etc. Expressions for the modified correlations are obtained in Section 3.

3. Main Results

Our goal in this section is to answer the following questions:
(i) Given the modified correlations $R_{r, 0}, R_{r, 1}(t), R_{r, 2}\left(t_{1}, t_{2}\right), R_{r, 3}\left(t_{1}, t_{2}, t_{3}\right), \ldots$ of the input process $x(t ; \omega)$ of Eq. (1.1) how can one find the modified cumulants
of the random input process $y(t ; \omega)$, namely, $\tilde{R}_{r, 0}, \tilde{R}_{r, 1}(t), \tilde{R}_{r, 2}\left(t_{1}, t_{2}\right)$, $\tilde{R}_{3}\left(t_{1}, t_{2}, t_{3}\right), \ldots$ for $\omega \in A_{r}, r=1,2, \ldots, q$?
(ii) Once $\tilde{R}_{r, 0}, \widetilde{R}_{r, 1}(t), \tilde{R}_{r, 2}\left(t_{1}, t_{2}\right), \ldots$ are known, for $r=1,2, \ldots, q$, how can one identify or approximate the modified characteristic function $\phi_{Y}^{(r)}\left(s_{1}{ }^{1}\right.$, $s_{2}{ }^{1}, \ldots, s_{n}{ }^{1}$) for $\omega \in A_{r}$?
(iii) Knowing the form of $\phi_{Y}^{(r)}\left(s_{1}{ }^{1}, s_{2}{ }^{1}, \ldots, s_{n}{ }^{1}\right), r=1,2, \ldots, q$, how can we identifyfthe probability density function of the resulting process of the system, $y(t ; \omega)$?

For brevity, we shall suppress the subscript r in the notation for $R_{r, n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and the subscript r for the modified characteristic functions $\phi_{X}^{(r)}(s)$ and $\phi_{Y}^{(r)}(s)$. It is understood also that $\omega \in A_{r}$, for some r between 1 and q. That is, we shall denote

$$
\begin{align*}
& \phi_{X}^{(r)}(s) \equiv \phi_{X}(s) \tag{3.1}\\
& \phi_{Y}^{(r)}(s) \equiv \phi_{Y}(s),
\end{align*}
$$

and

$$
R_{r, n}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \equiv R_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

where $\phi_{X}(s), \phi_{Y}(s)$ are modified characteristic functions and $R\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ denotes a modified cumulant. Also, we shall denote, for $\omega \in A_{r}$,

$$
\begin{equation*}
K(t, \tau ; \omega)=K_{r}(t, \tau) \equiv K(t, \tau) \tag{3.2}
\end{equation*}
$$

We shall assume $x(t ; \omega)$ and $K(t, \tau)$ to be continuous for $0 \leqslant \tau<t<T$. Our first problem is the determination of the modified cumulants referring to the random function $x(t ; \omega)$, namely,

$$
\begin{array}{ll}
R_{0}, & \\
R_{1}(t), & 0 \leqslant t \leqslant T \\
R_{2}\left(t_{1}, t_{2}\right), & 0 \leqslant t_{1}, t_{2} \leqslant T \\
R_{3}\left(t_{1}, t_{2}, t_{3}\right), & 0 \leqslant t_{1}, t_{2}, t_{3} \leqslant T
\end{array}
$$

It is necessary to consider one by one the modified characteristic functions of $x(t),\left(x\left(t_{1}\right), x\left(t_{2}\right)\right),\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right)$. In the notation which follows,

$$
\begin{gathered}
f(x)=f(x(t ; \omega)) \equiv f(x(t)) \\
x\left(t_{i} ; \omega\right) \equiv X_{i}
\end{gathered}
$$

and

$$
y\left(t_{i} ; \omega\right) \equiv Y_{i}
$$

For the univariate case for $x(t ; \omega)=X$, the results in Section 2.1 yield

$$
\begin{equation*}
\ln \phi_{X}(s)=R_{0}^{(1)}+i R_{1}^{(1)}(t) s+\frac{i^{2}}{2!} R_{2}^{(1)}(t) s^{2}+\cdots \tag{3.3}
\end{equation*}
$$

By a first order modified cumulant we mean a quantity

$$
R_{1}(t) \equiv R_{1}^{(1)}(t), \quad 0 \leqslant t \leqslant T
$$

The above can be extended to the multivariate cases. For example, for the bivariate case, we can similarly obtain

$$
\begin{align*}
\ln \phi_{X_{1} X_{2}}\left(s_{1}, s_{2}\right)= & R_{0}^{(2)}+i \sum_{\lambda=1}^{2} R_{1, \lambda}^{(2)}\left(t_{1}, t_{2}\right) s_{\lambda} \\
& +\frac{i^{2}}{2!} \sum_{\lambda, \mu=1}^{2} R_{2, \lambda \mu}^{(2)}\left(t_{1}, t_{2}\right) s_{\lambda} s_{\mu} \\
& +\frac{i^{3}}{3!} \sum_{\lambda, \mu, \nu=1}^{2} R_{3, \lambda \mu \nu}^{(2)}\left(t_{1}, t_{2}\right) s_{\lambda} s_{\mu} s_{\nu}+\cdots \tag{3.4}
\end{align*}
$$

Using these properties of modified characteristic functions, namely,

$$
\begin{aligned}
\phi_{X_{1} X_{2}}\left(s_{1}, 0\right) & =\phi_{X_{1}}\left(s_{1}\right) \\
\phi_{X_{1} X_{2}}\left(0, s_{2}\right) & =\phi_{X_{2}}\left(s_{2}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\phi_{X_{1} X_{2}}\left(s_{1}, s_{2}\right)=\phi_{X_{2} x_{1}}\left(s_{2}, s_{1}\right), \tag{3.5}
\end{equation*}
$$

we obtain

$$
R_{2, \lambda \mu}^{(2)}\left(t_{1}, t_{2}\right)=R_{2, \mu \lambda}^{(2)}\left(t_{2}, t_{1}\right) .
$$

Thus, the modified correlation function $R_{2}\left(t_{1}, t_{2}\right)$ is understood to mean

$$
\begin{aligned}
R_{2}\left(t_{\lambda}, t_{\mu}\right) & =R_{2}\left(t_{\mu}, t_{\lambda}\right) \\
& \equiv R_{2, \lambda \mu}^{(2)}\left(t_{1}, t_{2}\right) .
\end{aligned}
$$

From (3.3) and (3.5) we have

$$
\begin{aligned}
& R_{1,1}^{(2)}\left(t_{1}, t_{2}\right)=R_{1}^{(1)}\left(t_{1}\right) \equiv R_{1}\left(t_{1}\right), \\
& R_{1,2}^{(2)}\left(t_{1}, t_{2}\right)=R_{1}^{(1)}\left(t_{2}\right)=R_{1}\left(t_{2}\right),
\end{aligned}
$$

and

$$
R_{2}^{(1)}\left(t_{\lambda}\right) \equiv R_{2}\left(t_{\lambda}, t_{\lambda}\right)
$$

Thus Eq. (3.4) becomes

$$
\begin{align*}
\ln \phi_{X_{1} X_{2}}\left(s_{1}, s_{2}\right)= & R_{0}^{(2)}+i \sum_{\lambda=1}^{2} R_{1}\left(t_{\lambda}\right) s_{\lambda} \\
& +\frac{i^{2}}{2!} \sum_{\lambda, \mu=1}^{2} R_{2}\left(t_{\lambda}, t_{\mu}\right) s_{\lambda} s_{\mu} \\
& +\frac{i^{3}}{3!} \sum_{\lambda, \mu, \nu=1}^{2} R_{3, \lambda \mu \nu}^{(2)}\left(t_{1}, t_{2}\right) s_{\lambda} s_{\mu} s_{\mu}+\cdots \tag{3.6}
\end{align*}
$$

Continuing, the three-dimensional modified correlation function $R_{3}\left(t_{1}, t_{2}, t_{3}\right)$, $0 \leqslant t_{1}, t_{2}, t_{3} \leqslant T$ can be found as the coefficient of a term of order three in the logarithmic expansion of the modified characteristic function into a Maclaurin series.

Imposing symmetry, namely,

$$
R_{3}\left(t_{1}, t_{2}, t_{3}\right)=R_{3}\left(t_{1}, t_{3}, t_{2}\right)=\cdots
$$

we write

$$
\begin{align*}
\ln \phi_{X_{1} x_{2} x_{3}}\left(s_{1}, s_{2}, s_{3}\right)= & R_{0}^{(3)}+i \sum_{\lambda=1}^{3} R_{1}\left(t_{\lambda}\right) s_{\lambda} \\
& +\frac{i^{2}}{2!} \sum_{\lambda, \mu=1}^{3} R_{2}\left(t_{\lambda}, t_{\mu}\right) s_{\lambda} s_{\mu} \\
& +\frac{i^{3}}{3!} \sum_{\lambda, \mu, \nu=1}^{3} R_{3}\left(t_{\lambda}, t_{\mu}, t_{\nu}\right) s_{\lambda} s_{\mu} s_{v} \\
& +\frac{i^{4}}{4!} \sum_{\lambda, \mu, \nu=1}^{4} R_{4, \lambda \mu \mu k}^{(3)}\left(t_{1}, t_{2}, t_{3}\right) s_{\lambda} s_{\mu} s_{\nu} s_{\kappa}+\cdots \tag{3.7}
\end{align*}
$$

Generalizing, the modified characteristic function of the multidimensional random variable ($X_{1}, X_{2}, \ldots, X_{N}$) can be written as

$$
\begin{align*}
& \phi_{X_{1} X_{2} \cdots X_{N}}\left(s_{1}, s_{2}, \ldots, s_{N}\right) \\
& \quad=\exp \left\{R_{0}^{(N)}+i \sum_{\lambda=1}^{N} R_{1}\left(t_{\lambda}\right) s_{\lambda}+\frac{i^{2}}{2!} \sum_{\lambda, \mu=1}^{N} R_{2}\left(t_{\lambda}, t_{\mu}\right) s_{\lambda} s_{\mu}+\cdots\right\} \tag{3.8}
\end{align*}
$$

The combined distribution of $\left(Y_{1}, Y_{2}, \ldots, Y_{M}\right)$ has a modified characteristic function which by analogy with Eq. (3.8) has the form

$$
\begin{align*}
& \phi_{Y_{1} Y_{2} \cdots Y_{M}}\left(s_{1}, s_{2}, \ldots, s_{M}\right) \\
& \quad=\exp \tilde{R}_{0}^{(M)}+i \sum_{\alpha=1}^{M} \tilde{R}_{1}\left(t_{\alpha}\right) s_{\alpha}+\frac{i^{2}}{2!} \sum_{\alpha, \beta=1}^{M} \tilde{R}_{2}\left(t_{\alpha}, t_{\beta}\right) s_{\alpha} s_{\beta}+\cdots \tag{3.9}
\end{align*}
$$

We now present a method to find the modified correlation functions $\tilde{R}_{0}^{(M)}$, $\tilde{R}_{1}(t), \widetilde{R}_{2}\left(t_{1}, t_{2}\right), \ldots$ from our knowledge of $R_{0}^{(N)}, R_{1}(t), R_{2}\left(t_{1}, t_{2}\right), \ldots$.

First, we shall consider the problem of discrete sequences of time. Divide the interval $[0, T]$ into N small intervals, letting $\Delta=T / N$.

We introduce the averaged quantities

$$
\begin{aligned}
y_{m} & =\frac{1}{\Delta} \int_{(m-1) \Delta}^{m \Delta} y(t ; \omega) d t \\
& =\frac{1}{\Delta} \sum_{n=1}^{N} \int_{(m-1) \Delta}^{m \Delta} d t \cdot \int_{(n-1) \Delta}^{n \Delta} K(t, \tau) x(\tau ; \omega) d \tau .
\end{aligned}
$$

Furthermore, we assume that $K(t, \tau)$ is continuous and its sign does not change in each interval $[(i-1) \Delta, i \Delta]$. With $x(t ; \omega)$ continuous in t, we have by the mean value theorem,

$$
\begin{equation*}
y_{m}=\sum_{n=1}^{N} \frac{1}{\Delta} x\left(c_{n} ; \omega\right) \int_{(m-1) \Delta}^{m \Delta} \int_{(n-1) \Delta}^{n \Delta} K(t, \tau) d t d \tau, \quad \text { a.e. } \tag{3.10}
\end{equation*}
$$

for $(n-1) \Delta \leqslant c_{n} \leqslant n \Delta, x\left(c_{n} ; \omega\right)$ a constant function of t on $[(n-1) \Delta, n \Delta]$. Letting

$$
x\left(c_{n} ; \omega\right)=x(n)
$$

and

$$
K_{m n}=\frac{1}{\Delta} \int_{(m-1) \Delta}^{m \Delta} \int_{(n-1) \Delta}^{n \Delta} K(t, \tau) d t d \tau
$$

Eq. (3.10) becomes

$$
y_{m}=\sum_{n=1}^{N} K_{m n} x(n) .
$$

Suppose $\phi_{X_{i} X_{k}}\left(s_{i}, s_{k}\right)$ is the modified characteristic function of a two-dimensional random variable (X_{i}, X_{k}) having a joint probability density function $f_{i k}\left(x_{i}, x_{k}\right)$. Define

$$
\begin{gather*}
\phi_{X_{m} X_{n}}\left(s_{m}, s_{n}\right)=\phi_{X_{m}}\left(s_{m}\right) \phi_{X_{n}}\left(s_{n}\right) \phi_{X_{m} X_{n}}^{(2)}\left(s_{m}, s_{n}\right), \\
\phi_{X_{1} X_{m} X_{n}}\left(s_{1}, s_{m}, s_{n}\right)=\phi_{X_{1}}\left(s_{1}\right) \phi_{X_{m}}\left(s_{m}\right) \phi_{X_{n}}\left(s_{n}\right), \\
\phi_{X_{1} X_{m}}^{(2)}\left(s_{1}, s_{m}\right) \phi_{X_{1} X_{n}}^{(2)}\left(s_{1}, s_{n}\right) \phi_{X_{m} X_{n}}^{(2)}\left(s_{m}, s_{n}\right), \tag{3.11}\\
\phi_{X_{1} X_{m} X_{n}}^{(3)}\left(s_{1}, s_{m}, s_{n}\right),
\end{gather*}
$$

etc.

The funçtions $\phi_{X_{1} X+}^{(2)}\left(s_{1}, s_{m}\right), \phi_{X_{2} X+X 0}^{(3)}\left(s_{1}, s_{m}, s_{n}\right)$, etc., have the properties of:
(i) Symmetry. That is,

$$
\phi_{X_{1} X_{m} X_{n}}^{(3)}\left(s_{1}, s_{m}, s_{n}\right)=\phi_{X_{m} X_{n} X_{1}}^{(3)}\left(s_{m}, s_{n}, s_{1}\right),
$$

etc.
(ii) If at least one of the s_{j} 's is zero then

$$
\phi_{X_{1} X_{m} \cdots X}^{(i)}\left(s_{1}, \ldots, 0, \ldots, s_{p}\right)=1
$$

From (ii), the logarithm of the above vanishes when at least one of the arguments is zero. For notational purposes, we shall denote

$$
\ln \phi_{x_{1} x_{2} \cdots X_{n}}^{(i)}\left(s_{1}, s_{2}, \ldots, s_{N}\right)=\Gamma_{1,2, \ldots, N}^{(i)}\left(s_{1}, s_{2}, \ldots, s_{N}\right),
$$

and

$$
\ln \phi_{X_{1} X_{2} \ldots X_{N}}\left(s_{1}, s_{2}, \ldots, s_{N}\right)=\Gamma_{1,2, \ldots, N}\left(s_{1}, s_{2}, \ldots, s_{N}\right) .
$$

Hence,

$$
\begin{equation*}
\left.\Gamma_{1,2, \ldots, N}^{(i)}\left(s_{1}, s_{2}, \ldots, s_{N}\right)\right|_{\prod_{i} s_{i}=0}=0 \tag{3.12}
\end{equation*}
$$

Paley and Weiner (1934) have shown that the above functions $\Gamma^{(i)}$ and Γ can be expanded into a Maclaurin series. From Section 2 we obtain

$$
\begin{equation*}
\Gamma_{m}\left(s_{m}\right)=R_{0}^{(m)}+i R_{1}^{(m)} s_{m}+\frac{i^{2}}{2!} R_{2}^{(m m)} s_{m}^{2}+\frac{i^{3}}{3!} R_{3}^{(m m)} s_{m}^{3}+\cdots \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{m, n}^{(2)}\left(s_{m}, s_{n}\right)=\frac{i^{2}}{2!} R_{2}^{(m n)} s_{m} s_{n}+\frac{i^{3}}{3!} R_{3}^{(m m n)} s_{m}{ }^{2} s_{n}+R_{3}^{(m n n)} s_{m} s_{n}{ }^{2}+\cdots \tag{3.14}
\end{equation*}
$$

Equation (3.14) has all the terms containing at least one argument s_{j} by Eq. (3.12). Hence, using Eqs. (3.11) to (3.14) we obtain

$$
\begin{align*}
& \ln \left[\phi_{x_{1} x_{2} \cdots x_{N}}\left(s_{1}, s_{2}, \ldots, s_{N}\right)\right] \\
& \quad=\sum_{n=1}^{N} \Gamma_{n}\left(s_{n}\right)+\sum_{m, n=1}^{N} \Gamma_{m, n}^{(2)}\left(s_{m}, s_{n}\right)+\sum_{1, m, n=1}^{N} \Gamma_{1, m, n}^{(3)}\left(s_{1}, s_{m}, s_{n}\right) \cdots \tag{3.15}
\end{align*}
$$

Equation (3.15) can be put into the form
$\ln \left[\phi_{X_{1} X_{2} \cdots X_{N}}\left(s_{1}, s_{2}, \ldots, s_{N}\right)\right]$

$$
\begin{equation*}
=R_{0}+i \sum_{n=1}^{N} R_{1}^{(n)} s_{n}+\frac{i^{2}}{2!} \sum_{m, n=1}^{N} R_{2}^{(m n)} s_{m} s_{n}+\frac{i^{3}}{3!} \sum_{1, m, n=1}^{N} R_{3}^{\left.x_{1} m n\right)} s_{1} s_{m} s_{n}+\cdots, \tag{3.16}
\end{equation*}
$$

where R_{0} is a constant determined from $\sum_{n=1}^{N} \Gamma_{n}\left(s_{n}\right)$.
The stochastic input process is defined by the joint probability density function $f\left(x_{1}, \ldots, x_{N}\right)$ or by the modified characteristic function $\phi_{X_{1} X_{2} \cdots X_{N}}\left(s_{1}, s_{2}, \ldots, s_{N}\right)$. If $\ln \phi_{X_{1} X_{2}} \cdots x_{N}\left(s_{1}, s_{2}, \ldots, s_{N}\right)$ is known, we can find all the necessary statistical properties which underline the stochastic process $x(t ; \omega)$. Fiom Eq. (3.16) this logarithmic function is generated by the modified correlation functions R_{0}, $R_{1}^{(n)}, R_{2}^{(m n)}, \ldots$, etc. Our problem boils down to determining these cumulants for the output process $y(t ; \omega)$ from the given cumulants of the input process $x(t ; \omega)$ and the random impulse transfer function $K(t, \tau)$.

Suppose that it is necessary for us to find

$$
\phi_{Y_{1} \cdots Y_{M}}\left(s_{1}, s_{2}, \ldots, s_{M}\right)
$$

where

$$
y_{i}=\sum_{n=1}^{N} K_{i n} x(n)
$$

Lemma 1.1 gives

$$
\begin{equation*}
\phi_{Y_{1} \cdots Y_{M}}\left(s_{1}, s_{2}, \ldots, s_{M}\right)=\phi_{X_{1} X_{2} \cdots X_{N}}\left(\sum_{i=1}^{M} s_{i} K_{i 1}, \ldots, \sum_{i=1}^{M} s_{i} K_{i N}\right) . \tag{3.17}
\end{equation*}
$$

The logarithms are of the form

$$
\begin{equation*}
\ln \left[\phi_{Y_{1} \cdots Y_{M}}\left(s_{1}, \ldots, s_{M}\right)\right]=\ln \left[\phi_{X_{1} \cdots X_{N}}\left(\sum_{m=1}^{M} s_{m} K_{m 1}, \ldots, \sum_{m=1}^{M} s_{m} k_{m N}\right)\right] . \tag{3.18}
\end{equation*}
$$

From Eq. (3.16) we obtain

$$
\begin{equation*}
\ln \left[\phi_{Y_{1} \cdots Y_{M}}\left(s_{1}, \ldots, s_{M}\right)\right]=\tilde{R}_{0}+i \sum_{m=1}^{M} \tilde{R}_{1}^{(m)} s_{m}+\frac{i^{2}}{2!} \sum_{m, n=1}^{M} \tilde{R}_{2}^{(m n)} s_{m} s_{n}+\cdots . \tag{3.19}
\end{equation*}
$$

Using Eq. (3.18) we can write Eq. (3.19) as

$$
\begin{align*}
& \ln \left[\phi_{Y_{1} \cdots Y_{M}}\left(s_{1}, \ldots, s_{M}\right)\right] \\
& \quad=R_{0}+i \sum_{l=1}^{M} s_{1} \sum_{i=1}^{N} K_{1 i} R_{1}^{(i)}+\frac{i^{2}}{2!} \sum_{l, m=1}^{M} \sum_{i, j=1}^{N} s_{1} s_{m} K_{1 i} K_{m j} R_{2}^{(i j)}+\cdots \tag{3.20}
\end{align*}
$$

Hence,

$$
\begin{align*}
\tilde{R}_{0} & =R_{0} \\
\widetilde{R}_{1}^{(m)} & =\sum_{i=1}^{N} K_{m i} R_{1}^{(i)} \\
\widetilde{R}_{2}^{(m n)} & =\sum_{i, j=1}^{N} K_{m i} K_{n j} R^{(i j)}, \tag{3.21}\\
\tilde{R}_{3}^{(m n l)} & =\sum_{i, j, k=1}^{N} K_{m i} K_{n j} K_{l k} R^{(i j k)},
\end{align*}
$$

etc.
We now proceed to develop the theory for the case of continuous time. In this case, we shall partition $[0, T]$ into subintervals $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{N}$, where for $i-1,2, \ldots, N, \Delta_{i} \leqslant \delta$.

Equation (1.1) takes the form

$$
\begin{equation*}
y\left(t_{\alpha} ; \omega\right)=\sum_{n=1}^{N} \int_{\Delta_{n}} K(t, \tau) x(\tau ; \omega) d \tau \tag{3.22}
\end{equation*}
$$

By the mean value theorem, Eq. (3.22) becomes

$$
\begin{equation*}
y\left(t_{\alpha} ; \omega\right)=\sum_{n=1}^{N} x\left(t_{n}^{*} ; \omega\right) \int_{\Delta_{n}} K\left(t_{\alpha}, \tau\right) d \tau \tag{3.23}
\end{equation*}
$$

where $t_{n}^{*} \in \Delta_{n}$ and $x\left(t_{n}^{*} ; \omega\right)=x\left(t_{n}^{*}\right)$ is a constant function of t over Δ_{n}.
Using the mean value theorem once more, we obtain

$$
\begin{equation*}
y\left(t_{\alpha} ; \omega\right)=\sum_{n=1}^{N} x\left(t_{n}^{*}\right) K\left(t_{\alpha}, t_{n}^{* *}\right) \Delta_{n}, \tag{3.24}
\end{equation*}
$$

where $t_{n}^{*} \in \Delta_{n}, t_{n}^{* *} \in \Delta_{n}, 0 \leqslant t_{\alpha} \leqslant T$, and $K\left(t_{\alpha}, t_{n}^{* *}\right)$ is constant for each n. Employing Lemma 1.1 and Eq. (3.24) the modified characteristic function of the random variable $\left(Y_{1}, Y_{2}, \ldots, Y_{M}\right)$ is

$$
\phi_{Y_{1} Y_{2} \cdots Y_{M}}\left(s_{1}, \ldots, s_{M}\right)=\phi_{X_{1} \cdots x_{N}}\left(\sum_{\alpha=1}^{M} s_{\alpha} K\left(t_{\alpha}, t_{1}^{* *}\right) \Delta_{1}, \ldots, \sum_{\alpha=1}^{M} s_{\alpha} K\left(t_{\alpha}, t_{N}^{* *}\right) \Delta_{N}\right) .
$$

Thus Eq. (3.21) yields

$$
\begin{aligned}
\tilde{R}_{0} & =R_{0} \\
\tilde{R}_{1}\left(t_{\alpha}\right) & =\sum_{n=1}^{N} K\left(t_{\alpha}, t_{n}^{* *}\right) R_{1}\left(t_{n}^{*}\right) \Delta_{n}, \\
\tilde{R}_{2}\left(t_{\alpha}, t_{\beta}\right) & =\sum_{n, m=1}^{N} K\left(t_{\alpha}, t_{n}^{* *}\right) K\left(t_{\beta}, t_{n}^{* *}\right) R_{2}\left(t_{n}^{*}, t_{m}^{*}\right) \Delta_{n} \Delta_{m}, \\
\tilde{R}_{3}\left(t_{\alpha}, t_{\beta}, t_{\gamma}\right) & =\sum_{n, m, i=1}^{N} K\left(t_{\alpha}, t_{n}^{* *}\right) K\left(t_{\beta}, t_{n}^{* *}\right) K\left(t_{\gamma}, t_{1}^{* *}\right) R_{3}\left(t_{n}^{*}, t_{m}^{*}, t_{i}^{*}\right) \Delta_{n} \Delta_{m} \Delta_{i},
\end{aligned}
$$ etc.

We may mention here that the functions K, R_{1}, R_{2}, \ldots are Riemann integrable. Let $\delta \rightarrow 0$. Then regardless of where the points t_{i}^{*} or $t_{i}^{* *}$ are chosen in Δ_{i}, from Eq. (3.25) (Valle-Poussin, 1965),

$$
\begin{align*}
\tilde{R}_{0} & =R_{0} \\
\tilde{R}_{1}(t) & =\int_{0}^{T} K(t, \tau) R_{1}(\tau) d \tau \\
\widetilde{R}_{2}\left(t_{1}, t_{2}\right) & =\int_{0}^{T} \int_{0}^{T} K\left(t_{1}, \tau_{1}\right) K\left(t_{2}, \tau_{2}\right) R_{2}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2} \tag{3.26}\\
\tilde{R}_{3}\left(t_{1}, t_{2}, t_{3}\right) & =\int_{0}^{T} \int_{0}^{T} \int_{0}^{T} K\left(t_{1}, \tau_{1}\right) K\left(t_{2}, \tau_{2}\right) K\left(t_{3}, \tau_{3}\right) R_{3}\left(\tau_{1}, \tau_{2}, \tau_{3}\right) d \tau_{1} d \tau_{2} d \tau_{3}
\end{align*}
$$

etc.
This theory is useful in the sense that given the input process $x(t ; \omega)$ for the linear system (1.1) we can find its modified cumulants $R_{0}, R_{1}(t), R_{2}\left(t_{1}, t_{2}\right), \ldots$. We may use Eqs. (3.26) to derive the modified semi-invariants $\widetilde{R}_{0}, \widetilde{R}_{1}(t)$, $\widetilde{R}_{2}\left(t_{1}, t_{2}\right), \ldots$ for the output process $y(t ; \omega)$. These cumulants are used to obtain or approximate the characteristic function of the output process $y(t ; \omega)$ which enables us to describe the statistical properties of the output process.

We shall now summarize the above theory. Letting $R_{0}^{(r)}, R_{1}^{(r)}(t), R_{2}^{(r)}\left(t_{1}, t_{2}\right), \ldots$ denote the modified cumulants that arise from the modified characteristic function $\phi_{X_{1}}^{(r)} \cdots X_{N}\left(s_{1}, \ldots, s_{N}\right)$, we obtain for each $\omega \in A, r=1,2, \ldots, q$,

$$
\begin{aligned}
\tilde{R}_{0}^{(r)} & =R_{0}^{(r)}, \\
\tilde{R}_{1}^{(r)}(t) & =\int_{0}^{T} K\left(t_{1}, \tau_{1}\right) R_{1}^{(r)}(\tau) d \tau, \\
\tilde{R}_{2}^{(r)}\left(t_{1}, t_{2}\right) & =\int_{0}^{T} \int_{0}^{T} K_{r}\left(t_{1}, \tau_{1}\right) K_{r}\left(t_{2}, \tau_{2}\right) R_{2}^{(r)}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2},
\end{aligned}
$$

etc.
We shall now present a few practical examples to help clarify the theory.

4. Examples

Example 4.1. We are given the input process $x(t ; \omega)$ is independent of t. Let

$$
x(t ; \omega)=x(\omega)=\omega, \quad \omega \in(-\infty, \infty)
$$

and assume that X is distributed as $N\left(\mu, \sigma^{2}\right)$. Suppose

$$
A_{1}=[0, \infty)
$$

and

$$
A_{2}=(-\infty, 0)
$$

The kernel $K(t, \tau ; \omega)$ in Eq. (1.1) is defined as follows for $t, \tau \in[0,1], t \geqslant \tau$:

$$
K(t, \tau ; \omega)= \begin{cases}t-\tau, & \text { for } \omega \in A_{1} \\ 1-(t-\tau), & \text { for } \omega \in A_{2} .\end{cases}
$$

For $\omega \in A_{1}$, the modified characteristic function $\phi_{X}^{(1)}(s)$ for $X, \omega \in A_{1}$ is

$$
\begin{aligned}
\phi_{X}^{(1)}(s) & =E_{1}\left[e^{i s X}\right] \\
& =\int_{0}^{\infty} e^{i s x} \frac{1}{(2 \pi \sigma)^{1 / 2}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x .
\end{aligned}
$$

This restriction yields $\phi_{i}{ }^{1 i}(s)$ in the form

$$
\phi_{X}^{(1)}(s)=\exp \left\{R_{0}+i R_{1} s+\frac{i^{2}}{2!} R_{2} s^{2}+\frac{i^{3}}{3!} R_{3} s^{3}+\cdots\right\},
$$

where the R_{i} 's are independent of t. For the output process $y(t ; \omega), \omega \in A_{1}$, $t \geqslant \tau$,

$$
\begin{aligned}
& \tilde{R}_{0}=R_{0}, \\
& \widetilde{R}_{1}(t)=\int_{0}^{t}(t-\tau) R_{1} d \tau=R_{1} \frac{t^{2}}{2}, \\
& \tilde{R}_{2}(t)=\int_{0}^{t} \int_{0}^{t}\left(t-\tau_{1}\right)\left(t-\tau_{2}\right) R_{2} d \tau_{1} d \tau_{2}=R_{2}\left(\frac{t^{2}}{2}\right)^{2}, \\
& \tilde{R}_{n}(t)=\int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}\left(t-\tau_{1}\right) \cdots\left(t-\tau_{n}\right) R_{n} d \tau_{1} d \tau_{2} \cdots d \tau_{n}=R_{n}\left(\frac{t^{2}}{2}\right)^{n} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\phi_{Y}^{(1)}(s) & =\exp \left\{R_{0}+i R_{1} \frac{t^{2}}{2} s+\frac{i^{2}}{2!} R_{2}\left(\frac{t^{2}}{2} s\right)^{2}+\cdots\right\} \\
& =\phi_{X}^{(1)}\left(s \frac{t^{2}}{2}\right)
\end{aligned}
$$

Hence (see Tsokos, 1972) $y(t ; \omega)$ is distributed normal with a mean of $\left(t^{2} / 2\right) \mu$ and a variance of $\left(t^{4} / 4\right) \sigma^{2}$. That is,

$$
\begin{equation*}
y(t ; \omega) \sim N\left(\frac{t^{2}}{2} \mu, \frac{t^{4}}{4} \sigma^{2}\right) \tag{4.1}
\end{equation*}
$$

For $\omega \in A_{2}=(-\infty, 0)$,

$$
\begin{align*}
\phi_{X}^{(2)}(s) & =\int_{-\infty}^{0} e^{i s x} \frac{1}{(2 \mu \sigma)^{1 / 2}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
& =\exp \left\{R_{0}^{*}+i R_{1}^{*} s+\frac{i^{2}}{2!} R_{2}^{*} s^{2}+\cdots\right\} . \tag{4.2}
\end{align*}
$$

This gives for the output process $y(t ; \omega), t \geqslant \tau, \omega \in A_{2}$,

$$
\begin{aligned}
\tilde{R}_{0}^{*} & =R_{0}^{*} \\
\tilde{R}_{1}^{*}(t) & =\int_{0}^{t}[1-(t-\tau)] R_{1}^{*} d \tau=\frac{\left(2 t-t^{2}\right)}{2} R_{1}^{*} \\
R_{2}^{*}(t) & =\int_{0}^{t} \int_{0}^{t}\left[1-\left(t-\tau_{1}\right)\right]\left[1-\left(t-\tau_{2}\right)\right] R_{2}^{*} d \tau_{1} d \tau_{2}=\left(\frac{2 t-t^{2}}{2}\right)^{2} R_{2}^{*}
\end{aligned}
$$

etc. Hence,

$$
\phi_{Y}^{(2)}(s)=\phi_{X}^{(2)}\left(\left[\frac{2 t-t^{2}}{2}\right] s\right),
$$

and we see that for $\omega \in A_{2}$,

$$
y(t ; \omega) \sim N\left(\left[\frac{2 t-t^{2}}{2}\right] \mu,\left[\frac{2 t-t^{2}}{2}\right]^{2} \sigma^{2}\right)
$$

That is, $y(t ; \omega)$ has a normal distribution with mean of $\left[\left(2 t-t^{2}\right) / 2\right] \mu$ and a variance of $\left[\left(2 t-t^{2}\right) / 2\right]^{2} \sigma^{2}$.

The results given by Eqs. (4.1) and (4.2) are verified by noticing that from Eq. (1.1),

$$
\begin{aligned}
y(t ; \omega) & =\int_{0}^{t} K(t, \tau ; \omega) X d \tau \\
& =X \int_{0}^{t} K(t, \tau ; \omega) d \tau \\
& = \begin{cases}X \int_{0}^{t}(t-\tau) d \tau, & \omega \in A_{1} \\
X \int_{0}^{t}[1-(t-\tau)] d \tau, & \omega \in A_{2}\end{cases}
\end{aligned}
$$

Therefore, the probability density function for $y(t ; \omega)$ is

$$
f(y)=\left\{\begin{aligned}
f_{1}(y)= & \left(1 / 2 \pi \frac{t^{2}}{2}\right) \exp \left\{-\left(x-\frac{t^{2}}{2} \mu\right)^{2} / 2 \frac{t^{4}}{4} \sigma^{2}\right\}, \quad x>0 \\
f_{2}(y)= & 1 / 2 \pi\left(\frac{2 t-t^{2}}{2} \sigma\right) \\
& \times \exp \left\{-\left(x-\left[\frac{2 t-t^{2}}{2}\right] \mu\right)^{2} / 2\left(\frac{2 t-t^{2}}{2}\right)^{2} \sigma^{2}\right\}, \quad x \leqslant 0
\end{aligned}\right.
$$

We shall create several specific cases. For $t=0.5, \mu=2$, and $\sigma=1$, we have, using Eqs. (4.1) and (4.2),

$$
Y \sim N(0.25,0.015625) \quad \text { for } \quad \omega \in A_{1}
$$

and

$$
Y \sim N(0.75,0.140625) \quad \text { for } \quad \omega \in A_{2}
$$

The graph of the density $f(y)$ for $t=0.5$ and $\mu=2$ is shown by Fig. 2

Figure 1
Example 4.2. Suppose that the input process $x(t ; \omega)$ is a standard Weiner process and that $A_{1}, A_{2}, K(t, \tau ; \omega)$ are defined as in Example 4.1.

Recall that our problem is, given an input process. $x(t ; \omega)$, to determine the statistical properties of the output process, $y(t ; \omega)$. In other words, we must
find how the multivariate random variable $\left(y\left(t_{1} ; \omega\right), y\left(t_{2} ; \omega\right), \ldots, y\left(t_{n} ; \omega\right)\right)$ is distributed for any n, and $t_{1}, t_{2}, \ldots, t_{n} \in[0,1]$. This example shall show the usefulness of the above theory.

We begin by approximating the distribution of $y(t ; \omega)$ for a fixed t. For $\omega \in A_{1}$, the modified characteristic function $\phi_{X}^{(1)}(s)$ is

$$
\begin{align*}
\phi_{X}^{(1)}(s) & =E_{1}\left[e^{i s X}\right] \tag{4.3}\\
& =\int_{0}^{\infty} \frac{e^{i s x}}{(2 \pi t)^{1 / 2} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] d x .
\end{align*}
$$

Recall that for a Weiner process,

$$
E[x(t ; \omega)]=0
$$

and

$$
\operatorname{var}[x(t ; \omega)]=\sigma_{j}{ }^{2} .
$$

Without loss of generality, we shall assume that $\alpha^{2}=1$. Thus Eq. (4.3) becomes for $t \in(0,1]$,

$$
\begin{equation*}
\phi_{X}^{(1)}(s)=\int_{0}^{\infty} \frac{e^{i s x}}{(2 \pi)^{1 / 2} t} \exp \left[-\frac{x^{2}}{2 t^{2}}\right] d x . \tag{4.4}
\end{equation*}
$$

Now, Eq. (4.4) can be put in the form

$$
\phi_{X}^{(1)}(s)=\exp \left[-s^{2} \frac{t^{2}}{2}\right] \int_{-i s t}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d \approx,
$$

and

$$
\begin{equation*}
\ln \phi_{X}^{(1)}(s)=-s^{2} \frac{t^{2}}{2}+\ln \left[\int_{-i s t}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z\right] \tag{4.5}
\end{equation*}
$$

We proceed by calculating $\int_{-i s t}^{\infty} 1 /(2 \pi)^{1 / 2} e^{-z^{2} / 2} d z$. Let

$$
G(s)=\int_{-i s t}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z
$$

From the symmetry property of the function $e^{-z^{2} / 2}$, we have

$$
\frac{1}{2}=\int_{0}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z=\int_{0}^{-i s t} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z+\int_{-i s t}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z
$$

Thus,

$$
\begin{equation*}
\int_{-i s t}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z=\frac{1}{2}-\int_{0}^{-i s t} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z \tag{4.6}
\end{equation*}
$$

Using the series expansion we can write

$$
\begin{aligned}
\int_{0}^{-i s t} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z & =\left.\frac{1}{(2 \pi)^{1 / 2}}\left[z-\frac{z^{3}}{6}+\frac{z^{5}}{40}-\frac{z^{7}}{336}+\cdots\right]\right|_{0} ^{-i s t} \\
& =\frac{1}{(2 \pi)^{1 / 2}}\left[(-i s t)+\frac{i^{3} s^{3} t^{3}}{6}-\cdots\right]
\end{aligned}
$$

Thus Eq. (4.6) becomes

$$
\begin{align*}
\int_{-i s t}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z= & \frac{1}{2}+\frac{i t s}{(2 \pi)^{1 / 2}}-\frac{i^{3} t^{3} s^{3}}{3!(2 \pi)^{1 / 2}} \\
& +\frac{i^{5} 3 t^{5} s^{5}}{5!(2 \pi)^{1 / 2}}-\frac{i^{7} 3 \cdot 5 t^{7} s^{7}}{7!(2 \pi)^{1 / 2}}+\cdots \tag{4.7}
\end{align*}
$$

From Eq. (4.5) we obtain

$$
\begin{align*}
\ln \phi_{X}^{(1)}(s)= & -\frac{s^{2} t^{2}}{2}+\ln \left[\frac{1}{2}+\frac{i t s}{(2 \pi)^{1 / 2}}-\frac{i^{3} t^{3} s^{3}}{3!(2 \pi)^{1 / 2}}\right. \\
& \left.+\frac{i^{5} 3 t^{5} s^{5}}{5!(2 \pi)^{1 / 2}}-\frac{i^{7} 15 t^{7} 5^{7}}{7!(2 \pi)^{1 / 2}}+\cdots\right] \\
= & -\frac{s^{2} t^{2}}{2}+\ln \frac{1}{2}+\ln \left[1+\left\{\frac{2 i t s}{(2 \pi)^{1 / 2}}\right.\right. \\
& \left.\left.-\frac{2 i^{3} t^{3} s^{3}}{3!(2 \pi)^{1 / 2}}+\frac{2 i^{5} \cdot 3 t^{5} s^{5}}{5!(2 \pi)^{1 / 2}}-\cdots\right\}\right] \tag{4.8}
\end{align*}
$$

Equation (4.8) reduces to the form

$$
\begin{aligned}
\ln \phi_{X}^{(1)}(s)= & -\frac{s^{2} t^{2}}{2}+\ln \frac{1}{2}+\frac{2 i t s}{(2 \pi)^{1 / 2}}-\frac{2 i^{3} t^{3} s^{3}}{3!(2 \pi)^{1 / 2}}+\cdots \\
& -\frac{1}{2}\left\{\frac{2 i t s}{(2 \pi)^{1 / 2}}-\frac{2 i^{3} t^{3} s^{3}}{3!(2 \pi)^{1 / 2}}+\cdots\right\}^{2}-\cdots \\
& +\frac{1}{3}\left\{\frac{2 i t s}{(2 \pi)^{1 / 2}}-\frac{2 i^{3} t^{3} s^{3}}{3!(2 \pi)^{1 / 2}}+\cdots\right\}^{3}-\cdots \\
= & \ln \frac{1}{2}+i\left[\frac{2 t}{(2 \pi)^{1 / 2}}\right] s+\frac{i^{2}}{2!}\left[t^{2}-\frac{2 t^{2}}{\pi}\right] s^{2} \\
& +\frac{i^{3}}{3!}\left[-\frac{2 t^{3}}{(2 \pi)^{1 / 2}}+\frac{8 t^{3}}{\pi(2 \pi)^{1 / 2}}\right] s^{3}+\cdots
\end{aligned}
$$

Thus,

$$
\begin{aligned}
R_{0} & =\ln \frac{1}{2} \\
R_{1}(t) & =\frac{2 t}{(2 \pi)^{1 / 2}} \\
R_{2}(t) & =\left[1-\frac{2}{\pi}\right] t^{2}=R_{2}^{(2)}(t, t)
\end{aligned}
$$

and

$$
R_{3}(t)=\left[-1+\frac{4}{\pi}\right] \frac{2 t^{3}}{(2 \pi)^{1 / 2}}=R_{3}^{(3)}(t, t, t) .
$$

Since $t \geqslant \tau, t, \tau \in(0,1]$, we have for the modified characteristic function of the output process $y(t ; \omega)$ over A_{1}, the modified semi-invariants

$$
\begin{aligned}
R_{0} & =\ln \frac{1}{2}, \\
R_{1}(t) & =\int_{0}^{t}(t-\tau) \frac{2 \tau}{(2 \pi)^{1 / 2}} d \tau \\
& =\frac{t^{3}}{3(2 \pi)^{1 / 2}}, \\
\tilde{R}_{2}(t) & =\int_{0}^{t} \int_{0}^{t}\left(t-\tau_{1}\right)\left(t-\tau_{2}\right)\left(1-\frac{2}{\pi}\right) \tau_{1}^{2} d \tau_{1} d \tau_{2} \\
& =\left[1-\frac{2}{\pi}\right] \frac{t^{6}}{24} \\
& =0.02 t^{6},
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{R}_{3}(t)= & \int_{0}^{t} \int_{0}^{t} \int_{0}^{t}\left(t-\tau_{1}\right)\left(t-\tau_{2}\right)\left(t-\tau_{3}\right) R_{3}\left(\tau_{1}\right) d \tau_{1} d \tau_{2} d \tau_{3} \\
= & \int_{0}^{t}\left(t-\tau_{3}\right) d \tau_{3} \cdot \int_{0}^{t}\left(t-\tau_{2}\right) d \tau_{2} \cdot \int_{0}^{t}\left(t-\tau_{1}\right) \\
& \cdot\left[-1+\frac{4}{\pi}\right] \frac{2 \tau_{1}^{3}}{(2 \pi)^{1 / 2}} d \tau_{1} \\
< & 0.003,
\end{aligned}
$$

because $t \in(0,1]$.
Similarly, $\left|R_{4}(t)\right|,\left|R_{5}(t)\right|$, will become smaller and smaller and thus will have a negligible effect on $\ln \phi_{X}^{(1)}(s)$. Hence

$$
\phi_{Y}^{(1)}(s) \approx \exp \left\{\widetilde{R}_{0}+i \widetilde{R}_{1}(t) s-\frac{1}{2} \widetilde{R}_{2}(t) s^{2}\right\} .
$$

We observe that the form of the modified characteristic function $\phi_{X}^{(1)}(s)$ over A_{1} is the same as that for a normal distribution. Thus, for $\omega \in A_{1}$, the distribution of the output process $y(t ; \omega)$ is approximately $N\left[R_{1}(t), R_{2}(t)\right]$, that is

$$
y(t ; \omega) \sim N\left[\frac{t^{3}}{3(2 \pi)^{1 / 2}},\left(1-\frac{2}{\pi}\right) \frac{t^{6}}{24}\right] .
$$

Hence, for $\omega \in A_{1}$, the output process is distributed as normal with a mean of $t^{3} / 3(2 \pi)^{1 / 2}$ and a variance of $(1-2 / \pi)\left(t^{6} / 24\right)$.

When $\omega \in A_{2}$,

$$
\phi_{X}^{(2)}(s)=\int_{-\infty}^{0} \frac{e^{i s x}}{(2 \pi)^{1 / 2} t} \exp \left[-\frac{x^{2}}{2 t^{2}}\right] d x .
$$

Using the same reasoning as above, we obtain

$$
\begin{aligned}
R_{0} & =\ln \frac{1}{2} \\
R_{1}(t) & =-\frac{2 t}{(2 \pi)^{1 / 2}} \\
R_{2}(t) & =\left(1-\frac{2}{\pi}\right) t^{2}
\end{aligned}
$$

and

$$
\begin{equation*}
R_{3}(t)=\left(1-\frac{4}{\pi}\right) \frac{2 t^{3}}{(2 \pi)^{1 / 2}} \tag{4.9}
\end{equation*}
$$

Equation (4.9) yields

$$
\begin{aligned}
\widetilde{R}_{0} & =\ln \frac{1}{2} \\
\tilde{R}_{1}(t) & =-\frac{t^{3}}{3(2 \pi)^{1 / 2}} \\
\tilde{R}_{2}(t) & =\left(1-\frac{2}{\pi}\right) \frac{t^{6}}{24}
\end{aligned}
$$

and

$$
\tilde{R}_{3}(t)=\frac{1}{(2 \pi)^{1 / 2}}\left[1-\frac{4}{\pi}\right] \frac{t^{9}}{40}
$$

Performing an analysis identical to the case where $\omega \in A_{1}$ will yield that $\left|\tilde{R}_{3}(t)\right|<0.003$. Hence, we do not lose much accuracy in omitting powers of s of order three or more. Therefore, for $\omega \in A_{2}$, the approximate distribution for $y(t ; \omega)$ is normal, with a mean of $-t^{3} / 3(2 \pi)^{1 / 2}$ and variance $(1-2 / \pi)\left(t^{6} / 24\right)$, that is

$$
y(t ; \omega) \sim N\left[-\frac{t^{3}}{3(2 \pi)^{1 / 2}},\left(1-\frac{2}{\pi}\right) \frac{t^{6}}{24}\right]
$$

Given $t_{1}, t_{2} \in(0,1]$, we shall now consider the bivariate case where the bivariate random variable (X_{1}, X_{2}) is distributed as bivariate normal.

For $\omega \in A_{1}$, we have

$$
\begin{align*}
\phi_{X_{1} X_{2}}^{(1)}\left(s_{1}, s_{2}\right)= & E_{1}\left\{e^{i\left(s_{1} X_{1}+s_{2} X_{2}\right.}\right\} \\
= & \int_{0}^{\infty} \int_{0}^{\infty} e^{i\left(s_{1} x_{1}+s_{2} x_{2}\right)} \frac{1}{2 \pi \sigma_{X_{1}} \sigma_{X_{2}}\left(1-\rho^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\right. \\
& \left.\cdot\left[\left(\frac{x_{1}}{\sigma_{X_{1}}}\right)^{2}-2 \rho\left(\frac{x_{1}}{\sigma_{X_{1}}}\right)\left(\frac{x_{2}}{\sigma_{X_{2}}}\right)+\left(\frac{x_{2}}{\sigma_{X_{2}}}\right)^{2}\right]\right\} d x_{1} d x_{2} . \tag{4.10}
\end{align*}
$$

Letting

$$
\begin{gathered}
u=\frac{x_{1}}{\sigma_{X_{1}}}, \quad v=\frac{x_{2}}{\sigma_{X_{2}}}, \\
r_{1}=\frac{u-\rho v-\left(1-\rho^{2}\right) i s_{\mathrm{I}_{\mathrm{a}} \sigma^{1}}}{\left(1-\rho^{2}\right)^{1 / 2}}
\end{gathered}
$$

and

$$
r_{2}=v-\rho i s_{1} \sigma_{X_{1}}-i s_{2} \sigma_{X_{2}}
$$

Eq. (4.10) becomes

$$
\begin{aligned}
\phi_{X_{1} X_{2}}^{(1)}\left(s_{1}, s_{2}\right)= & \exp \left\{-\frac{1}{2}\left[s_{1}{ }^{2} \sigma_{X_{1}}^{2}+2 \rho s_{1} s_{2} \sigma_{X_{1}} \sigma_{X_{2}}+s_{2}^{2} \sigma_{X_{2}}^{2}\right]\right\} \\
& \cdot \int_{-\left(1-\rho^{2}\right)^{1 / 2} i s_{1} \sigma_{X_{1}}}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-r_{1}^{2} / 2} d r_{1} \int_{-\rho i s_{1} \sigma_{X_{1}}-i s_{2} \sigma_{X_{2}}}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-r_{2}{ }^{2} / 2} d r_{2}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \ln \phi_{X_{1} X_{2}}^{(1)}\left(s_{1}, s_{2}\right) \\
& = \tag{4.11}\\
& =-\frac{1}{2}\left[s_{1}{ }^{2} \sigma_{X_{1}}^{2}+2 \rho s_{1} s_{2} \sigma_{X_{1}} \sigma_{X_{2}}+s_{2}^{2} \sigma_{X_{2}}^{2}\right] \\
& \\
& \quad+\ln \int_{-\left(1-\rho^{2}\right) 1 / 2}^{\infty} s_{i s_{1} \sigma_{X_{1}}} \frac{1}{2} e^{-r_{2}{ }^{2} / 2} d r_{2}+\ln \int_{-\rho i s_{1} \sigma_{X_{1}}-i s_{2} \sigma_{X_{2}}}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-r_{2}^{2} / 2} d r_{2}
\end{align*}
$$

Since

$$
\int_{B}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z=\frac{1}{2}-\int_{0}^{3} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z
$$

and

$$
\int_{0}^{\beta} \frac{1}{(2 \pi)^{1 / 2}} e^{-z^{2} / 2} d z=\left.\frac{1}{(2 \pi)^{1 / 2}}\left[z-\frac{z^{3}}{6}+\frac{z}{40}-\frac{z}{336}+\cdots\right]\right|_{0} ^{8}
$$

we obtain

$$
\begin{aligned}
& \int_{-\left(1-\rho^{2}\right)^{1 / 2} s_{s_{1} \sigma_{X_{1}}}}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-r_{1}{ }^{2} / 2} d r_{1} \\
& \quad=\frac{1}{2}-\left[\frac{\left(-1-\rho^{2}\right) i s_{1} \sigma_{X_{1}}}{2 \pi}+\frac{\left(1-\rho^{2}\right)^{3 / 2} i^{3} s_{s_{1}}{ }^{3} \sigma_{X_{1}}^{3}}{6(2 \pi)^{1 / 2}}+\cdots\right] \\
& \quad=\frac{1}{2}+\frac{\left(1-\rho^{2}\right)^{1 / 2} i s_{s_{1}} \sigma_{X_{1}}}{(2 \pi)^{1 / 2}}-\frac{\left(1-\rho^{2}\right)^{3 / 2} i^{3} s_{1}{ }^{3} \sigma_{X_{1}}^{3}}{6(2 \pi)^{1 / 2}}+\cdots
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \int_{-\rho i s_{1} \sigma_{X_{1}}-i s_{2} \sigma_{X_{2}}}^{\infty} \frac{1}{(2 \pi)^{1 / 2}} e^{-r_{2}{ }^{2} / 2} d r_{2} \\
& \quad=\frac{1}{2}+\frac{\rho i s_{1} \sigma_{X_{1}}+i s_{2} \sigma_{X_{2}}}{(2 \pi)^{1 / 2}}-\frac{\left(\rho i s_{1} \sigma_{X_{1}}+i s_{2} \sigma_{X_{2}}\right)^{3}}{6(2 \pi)^{1 / 2}}+\cdots
\end{aligned}
$$

Thus, Eq. (4.11) becomes

$$
\begin{align*}
\ln \phi_{X_{1} X_{2}}^{(1)}\left(s_{1}, s_{2}\right)= & -\frac{1}{2}\left[s_{1}{ }^{2} \sigma_{X_{1}}^{2}+2 \rho s_{1} s_{2} \sigma_{X_{1}} \sigma_{X_{2}}+s_{2}^{2} \sigma_{X_{2}}^{2}\right] \\
& +\ln \left[\frac{1}{2}+\frac{\left(1-\rho^{2}\right)^{1 / 2} i s_{1} \sigma_{X_{1}}}{(2 \pi)^{1 / 2}}+\cdots\right] \\
& +\ln \left[\frac{1}{2}+\frac{\rho i s_{1} \sigma_{X_{1}}+i s_{2} \sigma_{X_{2}}}{(2 \pi)^{1 / 2}}+\cdots\right] \tag{4.12}
\end{align*}
$$

Here we note that

$$
\begin{align*}
& \ln \left[\frac{1}{2}+\frac{\left(1-\rho^{2}\right)^{1 / 2} i s_{1} \sigma_{X_{1}}}{(2 \pi)^{1 / 2}}-\frac{\left(1-\rho^{2}\right)^{3 / 2} i^{3}{ }^{3} \sigma_{1} \sigma_{X_{1}}}{6(2 \pi)^{1 / 3}}-\cdots\right] \\
& =\ln \frac{1}{2}+\ln \left[1+\left\{\frac{2\left(1-\rho^{2}\right)^{1 / 2} i i_{1} \sigma_{X_{1}}}{(2 \pi)^{1 / 2}}-\frac{\left(1-\rho^{2}\right)^{3 / 2} i^{3} s_{1}{ }^{3} \sigma_{X_{1}}^{3}}{3(2 \pi)^{1 / 2}}+\cdots\right\}\right] \tag{4.13}
\end{align*}
$$

and

$$
\begin{align*}
& \ln \left[\frac{1}{2}+\frac{\rho i s_{1} \sigma_{X_{1}}+i s_{2} \sigma_{X_{2}}}{(2 \pi)^{1 / 2}}-\frac{\left(\rho i s_{1} \sigma_{X_{1}}+i s_{2} \sigma_{X_{2}}\right)^{3}}{6(2 \pi)^{1 / 2}}+\cdots\right] \\
& \quad=\ln \frac{1}{2}+\ln \left[1+\left\{\frac{2 \rho i s_{1} \sigma_{X_{1}}+2 i s_{2} \sigma_{X_{2}}}{(2 \pi)^{1 / 2}}-\frac{\left(\rho i s_{1} \sigma_{X_{1}}+i s_{2} \sigma_{X_{2}}\right)^{3}}{3(2 \pi)^{1 / 2}}+\cdots\right\}\right] \tag{4.14}
\end{align*}
$$

From the fact that a characteristic function is analytic in a neighborhood of the origin, we restrict s_{1}, s_{2} near the origin so that the series in Eqs. (4.13) and (4.14) converge. Equation (4.12) may be put in the form

$$
\begin{aligned}
& \ln \phi_{X_{1} X_{2}}^{(1)}\left(s_{1}, s_{2}\right) \\
& = \\
& =\ln \frac{1}{4}+i\left[\left(\frac{2\left(1-\rho^{2}\right)^{1 / 2} \sigma_{X_{1}}}{(2 \pi)^{1 / 2}}+\frac{2 \rho \sigma_{X_{1}}}{(2 \pi)^{1 / 2}}\right) s_{1}+\left(\frac{2 \sigma_{X} \cdot}{\pi^{1 / 2}}\right) s_{2}\right] \\
& \quad+\frac{i^{2}}{2!}\left[\left(\sigma_{X_{1}}^{2}-\frac{2\left(1-\rho^{2}\right) \sigma_{X_{1}}^{2}}{\pi}-\frac{2 \rho^{2} \sigma_{X_{1}}^{2}}{\pi}\right) s_{1}^{2}\right. \\
& \left.\quad+\left(2 \rho \sigma_{X_{1}} \sigma_{X_{2}}-\frac{4 \rho \sigma_{X_{1}} \sigma_{X_{2}}}{\pi}\right) s_{1} s_{2}+\left(\sigma_{X_{2}}^{2}-\frac{2 \sigma_{X_{2}}^{2}}{\pi}\right) s_{2}^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\frac{i^{3}}{3!}\left[\left(\frac{\left(1-\rho^{2}\right)^{3 / 2} \sigma_{X_{1}}^{3}[-2 \pi+8]+\rho^{3} \phi_{X_{1}}^{3}[8-2 \pi]}{\pi(2 \pi)^{1 / 2}}\right) s_{1}^{3}\right. \\
& \left.+\left(\frac{\rho^{2} \sigma_{X_{1}}^{2} \sigma_{X_{2}}[24-6 \pi]}{\pi(2 \pi)^{1 / 2}}\right) s_{1}{ }^{2} s_{2}+\frac{\rho \sigma_{X_{1}} \sigma_{X_{1}}^{2}[24-6 \pi]}{\pi(2 \pi)^{1 / 2}}\right) s_{1} s_{2}{ }^{2} \\
& \left.+\left(\frac{\sigma_{X_{2}}^{3}[8-2 \pi]}{\pi(2 \pi)^{1 / 2}}\right) s_{2}{ }^{3}\right]+\cdots \tag{4.15}
\end{align*}
$$

Using the results developed in Section 3, we obtain the necessary cumulants

$$
\begin{aligned}
R_{2}\left(t_{1}, t_{2}\right) & =\left(1-\frac{2}{\pi}\right) \rho \sigma_{X_{1}} \sigma_{X_{2}} \\
R_{3}\left(t_{1}, t_{1}, t_{1}\right) & =R_{3}^{(2)}\left(t_{1}, t_{1}\right) \\
& =\frac{(8-2 \pi) \sigma_{X_{1}}^{3}}{\pi(2 \pi)^{1 / 2}}, \\
R_{3}\left(t_{1}, t_{2}, t_{1}\right) & =R_{3}^{(2)}\left(t_{1}^{(2)}, t_{2}\right) \\
& =\frac{(8-2 \pi) \sigma_{X_{1}}^{2} \sigma_{X_{2}}}{\pi(2 \pi)^{1 / 2}}, \\
R_{3}\left(t_{1}, t_{2}, t_{2}\right) & =R_{3}^{(2)}\left(t_{1}, t_{2}^{(2)}\right) \\
& =\frac{\rho(8-2 \pi) \sigma_{X_{1}} \sigma_{X_{2}}^{2}}{\pi(2 \pi)^{1 / 2}}
\end{aligned}
$$

and

$$
\begin{aligned}
R_{3}\left(t_{2}, t_{2}, t_{2}\right) & =R_{3}^{(2)}\left(t_{2}, t_{2}\right) \\
& =\frac{(8-2 \pi) \sigma_{X_{2}}^{3}}{\pi(2 \pi)^{1 / 2}}
\end{aligned}
$$

For the output process $y(t ; \omega), \omega \in A_{1}, R_{1}(t)$ is known for the case of a fixed t. Furthermore,

$$
\begin{align*}
\widetilde{R}_{2}\left(t_{1}, t_{2}\right)= & \int_{0}^{t_{2}} \int_{0}^{t_{1}}\left(t_{1}-\tau_{1}\right)\left(t_{2}-\tau_{2}\right) R_{2}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2} \\
= & \int_{0}^{t_{2}} \int_{0}^{t_{1}}\left(t-\tau_{1}\right)\left(t_{2}-\tau_{2}\right)\left[1-\frac{2}{\pi}\right] \rho\left(\tau_{1}\right)^{1 / 2}\left(\tau_{2}\right)^{1 / 2} d \tau_{1} d \tau_{2} \\
= & \left(1-\frac{2}{\pi}\right) \int_{0}^{t_{2}} \int_{0}^{t_{1}}\left(t_{1}-\tau_{1}\right)\left(t_{2}-\tau_{2}\right) \\
& \cdot \frac{\min \left(\tau_{1}, \tau_{2}\right)}{\tau_{1}^{1 / 2} \tau_{2}^{1 / 2}} \tau_{1}^{1 / 2} \tau_{2}^{1 / 2} d \tau d \tau \tag{4.16}
\end{align*}
$$

since for a Weiner process (Doob, 1953),

$$
\rho=\frac{\min \left(t_{1}, t_{2}\right)}{\sigma_{X_{1}} \sigma_{X_{2}}}
$$

Equation (4.16) now becomes

$$
\begin{aligned}
R_{2}\left(t_{1}, t_{2}\right) & =\left(1-\frac{2}{\pi}\right) \int_{0}^{t_{2}}\left(t_{2}-\tau_{2}\right) d \tau_{2}\left[\int_{0}^{\tau_{2}}\left(t_{1}-\tau_{1}\right) \tau_{1} d \tau_{1}+\int_{\tau_{2}}^{t_{1}}\left(t_{1}-\tau_{1}\right) \tau_{2} d \tau_{1}\right] \\
& =0.0031 t_{2}{ }^{3}\left[t_{2}{ }^{2}+10 t_{1}{ }^{2}-5 t_{1} t_{2}\right]
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\tilde{R}_{3}\left(t_{1}, t_{2}\right) & =\int_{0}^{t_{2}} \int_{0}^{t_{2}} \int_{0}^{t_{1}}\left(t_{2}-\tau_{3}\right)\left(t_{2}-\tau_{2}\right)\left(t_{1}-\tau_{1}\right) \frac{\rho(8-2 \pi)}{\pi(2 \pi)^{1 / 2}} \tau_{1} \tau_{2}{ }^{2} d \tau_{1} d \tau_{2} d \tau_{3} \\
& \approx 0.0024 t_{1}^{5 / 2} t_{2}{ }^{6}
\end{aligned}
$$

Since the magnitude of $\widetilde{R}_{3}\left(t_{1}, t_{2}\right)$ is of the same order as the magnitude of $\tilde{R}_{2}\left(t_{1}, t_{2}\right)$, we cannot just suppress the term

$$
\frac{i^{3}}{3!} \sum_{\lambda, \mu, v=1}^{2} \tilde{R}_{3}\left(t_{1}, t_{2}\right) s_{\lambda} s_{\mu} s_{v}
$$

plus the remaining terms in the expansion of $\ln \phi_{Y_{1} Y_{2}}^{(1)}\left(s_{1}, s_{2}\right)$. We would need to calculate $\tilde{R}_{4}\left(t_{1}, t_{2}\right), \tilde{R}_{5}\left(t_{1}, t_{2}\right), \ldots$, until for some $j \geqslant 3$, the magnitude of $\tilde{R}_{j+1}\left(t_{1}, t_{2}\right)$ is very small in comparison to that of $\tilde{R}_{j}\left(t_{1}, t_{2}\right)$. Thus we would obtain

$$
\begin{aligned}
\ln \phi_{Y_{1} Y_{2}}^{(1)}\left(s_{1}, s_{2}\right)= & R_{0}+i \sum_{\alpha_{1}=1}^{2} \tilde{R}_{1}\left(t_{1}, t_{2}\right) s_{\alpha_{1}} \\
& +\frac{i^{2}}{2} \sum_{\alpha_{1}, \alpha_{2}=1}^{2} \tilde{R}_{2}\left(t_{1}, t_{2}\right) s_{\alpha_{1}} s_{\alpha_{2}} \\
& +\cdots \\
& +\frac{i^{j}}{j!} \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j}=1}^{2} \tilde{R}_{j}\left(t_{1}, t_{2}\right) s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha}
\end{aligned}
$$

At this stage of the problem, even though we cannot state that the output process is distributed as bivariate normal for $\omega \in A_{1}$, we have a close approximation to $\ln \phi_{Y_{1} Y_{2}}^{(1)}\left(s_{1}, s_{2}\right)$, and hence we are able to obtain a good approximation to $\phi_{Y_{1} Y_{2}}^{(1)}\left(s_{1}, s_{2}\right)$. This information enables us to study the statistical properties of the output process $y(t ; \omega)$. For $\omega \in A_{2}=(-\infty, 0]$, we have an analogous
situation. This can be seen by considering the modified characteristic function

$$
\phi_{X_{1} X_{2}}^{(2)}\left(s_{1}, s_{2}\right)=\int_{-\infty}^{0} \int_{-\infty}^{0} e^{i\left(s_{1} x_{1}+s_{2} x_{2}\right)} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Using the identical techniques as in the case for $\omega \in A_{1}$, a good approximation in $\ln \phi_{Y_{1} Y_{2}}^{(1)}\left(s_{1}, s_{2}\right)$ can be obtained.

Example 4.3. Let $A=[0, \alpha), A=[\alpha, \infty)$, and the random impulse function be defined by

$$
K(t, \tau ; \omega)= \begin{cases}e^{\tau-t}, & \text { for } \omega \in A_{1} \\ 1-e^{(\tau-t)}, & \text { for } \omega \in A_{2}\end{cases}
$$

where $t \geqslant \tau$, for $t, \tau \in[0, T]$. We shall assume that the input process $x(t ; \omega)$ is independent of t and is distributed exponentially, that is, the probability density function of $x(t ; \omega)=X$ is

$$
f(x)= \begin{cases}\frac{1}{\beta} e^{-x / \beta} & z_{0 r} \quad x \geqslant 0, \quad \beta>0 \\ 0, & \text { elsewhere }\end{cases}
$$

For, $\omega \in A_{1}$,

$$
\phi_{X}^{(1)}(s)=\int_{0}^{x} e^{i, x} \frac{1}{\beta} e^{-x / \beta} d x,
$$

or

$$
\phi_{X}^{(1)}(s)=\exp \left\{R_{0}+i R_{1} s+\frac{i^{2}}{2!} R_{2} s^{2}+\cdots\right\}
$$

where $R_{0}, R_{1}, R_{2}, \ldots$ are independent of t. For the output process of $y(t ; \omega)$, we have for $t \geqslant \tau$,

$$
\begin{aligned}
& \tilde{R}=R_{0} \\
& \tilde{R}_{1}(t)=\int_{0}^{t} e^{\tau-t} R_{1} d \tau \\
&=R_{1} e^{-t}\left(e^{t}-1\right), \\
& \tilde{R}_{2}(t)=\int_{0}^{t} \int_{0}^{t} e^{\left(\tau_{1}-t\right)} e^{\left(\tau_{2}-t\right)} R_{2} d \tau_{1} d \tau_{2} \\
&=R_{2} e^{-2 t}\left(e^{t}-1\right)^{2}, \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot \cdots \\
& \tilde{R}_{n}(t)=\int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t} e^{\left(\tau_{1}-t\right)} \cdots e^{\left(\tau_{1}-t\right)} R_{n} d \tau_{1} \cdots d \tau_{n} \\
&=R_{n} e^{-n t}\left(e^{t}-1\right)^{n}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\phi_{Y}^{(1)}(s) & =\exp \left\{R_{0}+i R_{1} e^{-t}\left(e^{t}-1\right) s+\cdots\right\} \\
& =\phi_{X}^{(1)}\left(e^{-t}\left(e^{t}-1\right) s\right) .
\end{aligned}
$$

Therefore, over A_{1},

$$
Y=e^{-j}\left(e^{j}-1\right) X
$$

The probability density function of Y for $\omega \in A_{1}$ is obtained as follows:
Let

$$
k=e^{-j}\left(e^{j}-1\right)
$$

Thus, we have

$$
y=k x
$$

which yields

$$
\begin{equation*}
x=\frac{y}{k}, \tag{4.17}
\end{equation*}
$$

and the Jacobian of transformation (4.17) is

$$
\frac{d x}{d y}=\frac{1}{k}>0
$$

From this, the probability density function $h(y)$ of $y(t ; \omega)$ for $\omega \in A_{1}$ is

$$
h(y)= \begin{cases}f\left(\frac{y}{k}\right) \frac{1}{k}, & 0 \leqslant y<e^{-t}\left(e^{t}-1\right) \\ 0, & \text { elsewhere }\end{cases}
$$

or

$$
h(y)= \begin{cases}\frac{1}{e^{-t}\left(e^{t}-1\right) \beta} \exp \left\{-\frac{y}{e^{-t}\left(e^{t}-1\right) \beta}\right\}, & 0 \leqslant y<e^{-t}\left(e^{t}-1\right) \\ 0, & \text { elsewhere }\end{cases}
$$

We see that over $A_{1}, y(t ; \omega)$ is exponentially distributed, with

$$
E\{y(t ; \omega)\}=e^{-t}\left(e^{t}-1\right),
$$

and

$$
\operatorname{var}[y(t ; \omega)]=e^{-2 t}\left(e^{t}-1\right)^{2}
$$

Over A_{2}, the approach is identical and $y(t ; \omega)$ will be exponentially distributed.

References

Doob, J. (1953), "Stochastic Processes," Wiley, New York.
Kendall, M. G., and Stuart, A. (1943), "The Advanced Theory of Statistics," Vol. I, Hafner, New York.
Kuznetsov, P., Stratonovich, R., and Tikhonov, V. (1965), "Nonlinear Transformations of Stochastic Processes,' Pergamon, New York.
Paley, R., and Weiner, N. (1934), "Fourier Transformas in the Complex Domain," Amer. Math. Soc., New York.
Tsokos, C. P. (1972), "Probability Distributions: An Introduction to Probability Theory with Applications," Duxbury Press, Duxbury, Mass.
Valle-Poussin, referenced in Chapter I, Kuznetsov et al. (1965).

[^0]: * This research was supported by the United States Air Force, Air Force Office of Scientific Research, under Grant AFORS 75-2711.

