2,855 research outputs found

    Modeling of radiation damage in silicon solar cells

    Get PDF
    One MeV electron irradiation produces preponderantly isolated vacancy interstitial pairs. If neither of these defects is mobile, the concentration of each grows linearly with fluence. Annealing of damage depends on the nature of the damage. Vacancy interstitial pairs which are bound by an interaction such that they mutually annihilate rather than dissociate are termed close pairs; close pair recovery usually occurs at a lower temperature than the temperature at which long distance defect migration occurs. Annealing of the remaining frozen in damage occurs when a temperature is reached where the vacancy or interstitial is mobile; usually the interstitial is more mobile than the vacancy. The recovery occurs in two regimes which may be resoluable

    High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    Get PDF
    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented

    Radio-loud Active Galaxies in the Northern ROSAT All-Sky Survey III: New Spectroscopic Identifications from the RGB BL Lac Survey

    Full text link
    We present new spectroscopic identifications for 169 objects in the RASS-Green Bank (RGB) catalog of radio- and X-ray-emitting AGN. These data significantly increase the fraction of bright RGB objects with classifications. Specifically, we report and discuss the classification of 66 radio-loud quasars, 53 BL Lacs, 33 Broad Line Radio Galaxies, 5 Narrow Line Radio Galaxies, 1 Seyfert I galaxy and 11 galaxies or galaxies in clusters. Over 78% of the identifications we present here are new. The observations we report were undertaken as part of our targeted search program to identify a new, large unbiased sample of BL Lac Objects and we therefore discuss the BL Lac sample extensively. Unlike many previous surveys, we impose no selection criteria based on optical morphology, color or broadband spectral energy distribution. Our classifications are based solely on a carefully defined set of self-consistent spectroscopic classification criteria. We show the 53 RGB presented here exhibit transitional properties between normal galaxies and BL Lacs discovered previously. We show there is no clear separation in CaII break strength between RGB BL Lacs and galaxies, with the distribution of break strengths varying smoothly between 0% and 50%. We also show that the newly discovered RGB BL Lacs reside in a "zone of avoidance" in the log(S_x/S_r) vs. log(S_o/S_r) diagram. This has important implications for BL Lac search strategies since it shows that RASS BL Lac samples will be severely incomplete if candidates are chosen only from among those objects with the highest S_x/S_r flux ratios.Comment: 21 pages text, 189 Figures, 4 tables, LaTeX2E, 4.2MB tar file (compressed); special style file paper.sty provide

    Pace and Process of Active Folding and Fluvial Incision Across the Kantishna Hills Anticline, Central Alaska

    Get PDF
    Rates of northern Alaska Range thrust system deformation are poorly constrained. Shortening at the system\u27s west end is focused on the Kantishna Hills anticline. Where the McKinley River cuts across the anticline, the landscape records both Late Pleistocene deformation and climatic change. New optically stimulated luminescence and cosmogenic 10Be depth profile dates of three McKinley River terrace levels (~22, ~18, and ~14–9 ka) match independently determined ages of local glacial maxima, consistent with climate-driven terrace formation. Terrace ages quantify rates of differential bedrock incision, uplift, and shortening based on fault depth inferred from microseismicity. Differential rock uplift and incision (≀1.4 m/kyr) drive significant channel width narrowing in response to ongoing folding at a shortening rate of ~1.2 m/kyr. Our results constrain northern Alaska Range thrust system deformation rates, and elucidate superimposed landscape responses to Late Pleistocene climate change and active folding with broad geomorphic implications

    Pauli problem for a spin of arbitrary length: A simple method to determine its wave function

    Get PDF
    The problem of determining a pure state vector from measurements is investigated for a quantum spin of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The remaining ambiguity can be resolved by one additional well-defined measurement. This method combines efficiency with simplicity: only a small number of quantities have to be measured and the experimental setup is elementary. Other approaches to determine state vectors from measurements, also known as the ‘‘Pauli problem,’’ are reviewed for both spin and particle systems

    COLA II - Radio and Spectroscopic Diagnostics of Nuclear Activity in Galaxies

    Get PDF
    We present optical spectroscopic observations of 93 galaxies taken from the infra-red selected COLA (Compact Objects in Low Power AGN) sample. The sample spans the range of far-IR luminosities from normal galaxies to LIRGs. Of the galaxies observed, 78 (84%) exhibit emission lines. Using a theoretically-based optical emission-line scheme we classify 15% of the emission-line galaxies as Seyferts, 77% as starbursts, and the rest are either borderline AGN/starburst or show ambiguous characteristics. We find little evidence for an increase in the fraction of AGN in the sample as a function of far-IR luminosity but our sample covers only a small range in infrared luminosity and thus a weak trend may be masked. As a whole the Seyfert galaxies exhibit a small, but significant, radio excess on the radio-FIR correlation compared to the galaxies classified as starbursts. Compact (<0.05'') radio cores are detected in 55% of the Seyfert galaxies, and these galaxies exhibit a significantly larger radio excess than the Seyfert galaxies in which cores were not detected. Our results indicate that there may be two distinct populations of Seyferts, ``radio-excess'' Seyferts, which exhibit extended radio structures and compact radio cores, and ``radio-quiet'' Seyferts, in which the majority of the radio emission can be attributed to star-formation in the host galaxy. No significant difference is seen between the IR and optical spectroscopic properties of Seyferts with and without radio cores. (Abridged)Comment: 24 pages, 4 figures, 6 tables. Accepted for publication in ApJ, February 200

    Coupled-barrier diffusion: the case of oxygen in silicon

    Full text link
    Oxygen migration in silicon corresponds to an apparently simple jump between neighboring bridge sites. Yet, extensive theoretical calculations have so far produced conflicting results and have failed to provide a satisfactory account of the observed 2.52.5 eV activation energy. We report a comprehensive set of first-principles calculations that demonstrate that the seemingly simple oxygen jump is actually a complex process involving coupled barriers and can be properly described quantitatively in terms of an energy hypersurface with a ``saddle ridge'' and an activation energy of ∌2.5\sim 2.5 eV. Earlier calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys. Rev. Let

    A Viewing Angle - Kinetic Luminosity Unification Scheme For BL Lacertae Objects

    Get PDF
    We propose a unified classification for BL Lac objects (BLs), focusing on the synchrotron peak frequency of the spectral energy distribution. The unification scheme is based on the angle Theta that describes the orientation of the relativistic jet and on the electron kinetic luminosity Lambda of the jet. We assume that Lambda scales with the size of the jet r in a self-similar fashion (Lambda propto r^2), as supported by observational data. The jets are self-similar in geometry and have the same pressure and median magnetic field at the inlet, independent of size. The self-similarity is broken for the highest energy electrons, which radiate mainly at high frequencies, since for large sources they suffer more severe radiative energy losses over a given fraction of the jet length. We calculate the optically thin synchrotron spectrum using an accelerating inner jet model based on simple relativistic gas dynamics and show that it can fit the observed infrared to X-ray spectrum of PKS 2155--304. We couple the accelerating jet model to the unification scheme and compare the results to complete samples of BLs. The negative apparent evolution of X-ray selected BLs is explained as a result of positive evolution of the jet electron kinetic luminosity Λkin\Lambda_{kin}. We review observational arguments in favor of the existence of scaled-down accretion disks and broad emission-line regions in BLs. The proposed unification scheme can explain the lack of observed broad emission lines in X-ray selected BLs, as well as the existence of those lines preferentially in luminous radio-selected BLs. Finally, we review observational arguments that suggest the extension of this unification scheme to all blazars.Comment: 32 pages, 8 figures, to be published in the ApJ (Oct 20, 1998
    • 

    corecore