1,183 research outputs found
Non-Dipolar Electron Angular Distributions from Fixed-in-Space Molecules
The first indication of nondipole effects in the azimuthal dependence of photoelectron angular distributions emitted from fixed-in-space molecules is demonstrated in N2. Comparison of the results with angular distributions observed for randomly oriented molecules and theoretical derivations for the nondipole correction first order in photon momentum suggests that higher orders will be needed to describe distributions measured in the molecular frame
Analysis of the variability of nursing care by pathology in a sample of nine Belgian hospitals
info:eu-repo/semantics/published27th Patient Classification Systems International (PCSI) Working Conference, Montreal, Canada, October 201
Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71
The determination of the thermodynamic properties of clusters of galaxies at
intermediate and high redshift can bring new insights into the formation of
large-scale structures. It is essential for a robust calibration of the
mass-observable scaling relations and their scatter, which are key ingredients
for precise cosmology using cluster statistics. Here we illustrate an
application of high resolution arcsec) thermal Sunyaev-Zel'dovich (tSZ)
observations by probing the intracluster medium (ICM) of the \planck-discovered
galaxy cluster \psz\ at redshift , using tSZ data obtained with the
NIKA camera, which is a dual-band (150 and 260~GHz) instrument operated at the
IRAM 30-meter telescope. We deproject jointly NIKA and \planck\ data to extract
the electronic pressure distribution from the cluster core () to its outskirts () non-parametrically for the
first time at intermediate redshift. The constraints on the resulting pressure
profile allow us to reduce the relative uncertainty on the integrated Compton
parameter by a factor of two compared to the \planck\ value. Combining the tSZ
data and the deprojected electronic density profile from \xmm\ allows us to
undertake a hydrostatic mass analysis, for which we study the impact of a
spherical model assumption on the total mass estimate. We also investigate the
radial temperature and entropy distributions. These data indicate that \psz\ is
a massive ( M) cool-core cluster.
This work is part of a pilot study aiming at optimizing the treatment of the
NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at
intermediate and high redshifts. (abridged)Comment: 16 pages, 10 figure
NIKA2: a mm camera for cluster cosmology
Galaxy clusters constitute a major cosmological probe. However, Planck 2015
results have shown a weak tension between CMB-derived and cluster-derived
cosmological parameters. This tension might be due to poor knowledge of the
cluster mass and observable relationship.
As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({\it e.g.}
SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium
for low redshift clusters () high
resolution and high sensitivity SZ observations are needed. With both a wide
field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec
at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope
(Pico Veleta, Spain) is particularly well adapted for these observations. The
NIKA2 SZ observation program will map a large sample of clusters (50) at
redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of
galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m
telescope to cover the various configurations and observation conditions
expected for NIKA2.
High-resolution tSZ cartography of clusters of galaxies with NIKA at the IRAM 30-m telescope
The thermal Sunyaev-Zeldovich effect (tSZ) is a powerful probe to study
clusters of galaxies and is complementary with respect to X-ray, lensing or
optical observations. Previous arcmin resolution tSZ observations ({\it e.g.}
SPT, ACT and Planck) only enabled detailed studies of the intra-cluster medium
morphology for low redshift clusters (). Thus, the development of
precision cosmology with clusters requires high angular resolution observations
to extend the understanding of galaxy cluster towards high redshift. NIKA2 is a
wide-field (6.5 arcmin field of view) dual-band camera, operated at and containing KID (Kinetic Inductance Detectors), designed to
observe the millimeter sky at 150 and 260 GHz, with an angular resolution of 18
and 12 arcsec respectively. The NIKA2 camera has been installed on the IRAM
30-m telescope (Pico Veleta, Spain) in September 2015. The NIKA2 tSZ
observation program will allow us to observe a large sample of clusters (50) at
redshift ranging between 0.5 and 1. As a pathfinder for NIKA2, several clusters
of galaxies have been observed at the IRAM 30-m telescope with the NIKA
prototype to cover the various configurations and observation conditions
expected for NIKA2.Comment: Proceedings of the 28th Texas Symposium on Relativistic Astrophysics,
Geneva, Switzerland, December 13-18, 201
High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis
The prototype of the NIKA2 camera, NIKA, is an instrument operating at the
IRAM 30-m telescope, which can observe simultaneously at 150 and 260GHz. One of
the main goals of NIKA2 is to measure the pressure distribution in galaxy
clusters at high resolution using the thermal SZ (tSZ) effect. Such
observations have already proved to be an excellent probe of cluster pressure
distributions even at high redshifts. However, an important fraction of
clusters host submm and/or radio point sources, which can significantly affect
the reconstructed signal. Here we report on <20" resolution observations at 150
and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point
sources. We examine the morphology of the tSZ signal and compare it to other
datasets. The NIKA data are combined with Herschel satellite data to study the
SED of the submm point source contaminants. We then perform a joint
reconstruction of the intracluster medium (ICM) electronic pressure and density
by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact
of the radio and submm sources on the reconstructed pressure profile. We find
that large-scale pressure distribution is unaffected by the point sources
because of the resolved nature of the NIKA observations. The reconstructed
pressure in the inner region is slightly higher when the contribution of point
sources are removed. We show that it is not possible to set strong constraints
on the central pressure distribution without accurately removing these
contaminants. The comparison with X-ray only data shows good agreement for the
pressure, temperature, and entropy profiles, which all indicate that MACSJ1424
is a dynamically relaxed cool core system. The present observations illustrate
the possibility of measuring these quantities with a relatively small
integration time, even at high redshift and without X-ray spectroscopy.Comment: 15 pages, 17 figures, submitted to A&
Nika2: A mm camera for cluster cosmology
Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2
Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA
Measurement of the gas velocity distribution in galaxy clusters provides
insight into the physics of mergers, through which large scale structures form
in the Universe. Velocity estimates within the intracluster medium (ICM) can be
obtained via the Sunyaev-Zel'dovich (SZ) effect, but its observation is
challenging both in term of sensitivity requirement and control of systematic
effects, including the removal of contaminants. In this paper we report
resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple
merger MACS J0717.5+3745 (z=0.55), using data obtained with the NIKA camera at
the IRAM 30m telescope. Assuming that the SZ signal is the sum of a thermal
(tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we
extract for the first time a resolved map of the kSZ signal in a cluster. The
kSZ signal is dominated by a dipolar structure that peaks at -5.1 and +3.4
sigma, corresponding to two subclusters moving respectively away and toward us
and coincident with the cold dense X-ray core and a hot region undergoing a
major merging event. We model the gas electron density and line-of-sight
velocity of MACS J0717.5+3745 as four subclusters. Combining NIKA data with
X-ray observations from XMM-Newton and Chandra, we fit this model to constrain
the gas line-of-sight velocity of each component, and we also derive, for the
first time, a velocity map from kSZ data (i.e. that is model-dependent). Our
results are consistent with previous constraints on the merger velocities, and
thanks to the high angular resolution of our data, we are able to resolve the
structure of the gas velocity. Finally, we investigate possible contamination
and systematic effects with a special care given to radio and submillimeter
galaxies. Among the sources that we detect with NIKA, we find one which is
likely to be a high redshift lensed submillimeter galaxy.Comment: 19 pages, 9 figures, accepted in A&
- …