6,449 research outputs found

    A program to evaluate a control system based on feedback of aerodynamic pressure differentials, part 1

    Get PDF
    The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described

    New approaches for detecting thresholds of human nephrotoxicity using cadmium as an example.

    Get PDF
    Damage to the kidneys is one of the primary toxic actions of metals. Nephrotoxic substances not only cause renal disease directly, but they can also destroy renal reserve capacity, potentially placing those people with additional risk factors, such as diabetes, hypertension, cardiovascular disease, and genetic predispositions, at greater risk. To detect nephrotoxicity in people at a stage where intervention can be effective, sensitive methods are needed. One of the major advantages of using sensitive biomarkers of renal damage is that people who may be particularly susceptible to renal damage can be identified early, at a reversible stage of damage, and the progression to end-stage renal disease may be halted or delayed. Various categories of tests can be used to detect effects of nephrotoxic substances on the kidney. Through the use of biomarkers of damage to various parts of the nephron, U.S. and European studies have both shown a similar pattern of damage among men occupationally exposed to cadmium. These studies indicate various thresholds of renal effects, which researchers suggest represent a cascade of progressively severe damage to the kidney. Research into new biomarkers of damage caused by exposure to nephrotoxic substances centers around mechanisms of cell death, including necrosis and apoptosis; mechanisms of cell growth, regeneration, and proliferation, including factors that control cell cycle, influence gene expression, and modulate nucleic acid synthesis; and genetic factors that increase susceptibility to renal disease. Examples of types of candidate biomarkers include cytokines, lipid mediators, growth factors, transcription factors and protooncogenes, extracellular matrix components (collagen, glycoproteins, and proteoglycans), and cell adhesion molecules. Research into new categories of biomarkers may provide additional insights into the mechanisms of damage caused by nephrotoxins

    Aperture synthesis for gravitational-wave data analysis: Deterministic Sources

    Get PDF
    Gravitational wave detectors now under construction are sensitive to the phase of the incident gravitational waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider the problem of aperture synthesis in the special case of a search for a source whose waveform is known in detail: \textit{e.g.,} compact binary inspiral. We derive the likelihood function for joint output of several detectors as a function of the parameters that describe the signal and find the optimal matched filter for the detection of the known signal. Our results allow for the presence of noise that is correlated between the several detectors. While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact, appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character. The analysis described here stands in distinction to ``coincidence analyses'', wherein the data from each of several detectors is studied in isolation to produce a list of candidate events, which are then compared to search for coincidences that might indicate common origin in a gravitational wave signal. We compare these two analyses --- optimal filtering and coincidence --- in a series of numerical examples, showing that the optimal filtering analysis always yields a greater detection efficiency for given false alarm rate, even when the detector noise is strongly non-Gaussian.Comment: 39 pages, 4 figures, submitted to Phys. Rev.

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Using coupled micropillar compression and micro-Laue diffraction to investigate deformation mechanisms in a complex metallic alloy Al13Co4

    Get PDF
    In this investigation, we have used in-situ micro-Laue diffraction combined with micropillar compression of focused ion beam milled Al13Co4 complex metallic alloy to study the evolution of deformation in Al13Co4. Streaking of the Laue spots showed that the onset of plastic flow occured at stresses as low as 0.8 GPa, although macroscopic yield only becomes apparent at 2 GPa. The measured misorientations, obtained from peak splitting, enabled the geometrically necessary dislocation density to be estimated as 1.1 x 1013 m-2

    High-Energy X-ray Imaging of the Pulsar Wind Nebula MSH~15-52: Constraints on Particle Acceleration and Transport

    Get PDF
    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (>8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region towards the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV which may be explained by a break in the synchrotron-emitting electron distribution at ~200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50" of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present 2-D maps of spectral parameters and find an interesting shell-like structure in the NH map. We discuss possible origins of the shell-like structure and their implications.Comment: 15 pages, 9 figures, accepted for publication in Ap

    Overview of the BlockNormal Event Trigger Generator

    Get PDF
    In the search for unmodeled gravitational wave bursts, there are a variety of methods that have been proposed to generate candidate events from time series data. Block Normal is a method of identifying candidate events by searching for places in the data stream where the characteristic statistics of the data change. These change-points divide the data into blocks in which the characteristics of the block are stationary. Blocks in which these characteristics are inconsistent with the long term characteristic statistics are marked as Event-Triggers which can then be investigated by a more computationally demanding multi-detector analysis.Comment: GWDAW-8 proceedings, 6 pages, 2 figure

    Multilayer coating facility for the HEFT hard x-ray telescope

    Get PDF
    A planar magnetron sputtering facility has been established at the Danish Space Research Institute (DSRI) for the production coating of depth graded multilayers on the thermally slumped glass segments which form the basis for the hard X-ray telescope on the HEFT balloon project. The facility is capable of coating 20-45 mirrors segments in each run. The coatings are optimized W/Si coatings. The paper describes the facility, the results of the calibration and presents data for the X-ray testing of flight mirrors

    The Hard X-Ray View of the Young Supernova Remnant G1.9+0.3

    Get PDF
    NuSTAR observed G1.9+0.3, the youngest known supernova remnant in the Milky Way, for 350 ks and detected emission up to \sim30 keV. The remnant's X-ray morphology does not change significantly across the energy range from 3 to 20 keV. A combined fit between NuSTAR and CHANDRA shows that the spectrum steepens with energy. The spectral shape can be well fitted with synchrotron emission from a power-law electron energy distribution with an exponential cutoff with no additional features. It can also be described by a purely phenomenological model such as a broken power-law or a power-law with an exponential cutoff, though these descriptions lack physical motivation. Using a fixed radio flux at 1 GHz of 1.17 Jy for the synchrotron model, we get a column density of NH_{\rm H} = (7.23±0.07)×1022(7.23\pm0.07) \times 10^{22} cm2^{-2}, a spectral index of α=0.633±0.003\alpha=0.633\pm0.003, and a roll-off frequency of νrolloff=(3.07±0.18)×1017\nu_{\rm rolloff}=(3.07\pm0.18) \times 10^{17} Hz. This can be explained by particle acceleration, to a maximum energy set by the finite remnant age, in a magnetic field of about 10 μ\muG, for which our roll-off implies a maximum energy of about 100 TeV for both electrons and ions. Much higher magnetic-field strengths would produce an electron spectrum that was cut off by radiative losses, giving a much higher roll-off frequency that is independent of magnetic-field strength. In this case, ions could be accelerated to much higher energies. A search for 44^{44}Ti emission in the 67.9 keV line results in an upper limit of 1.5×1051.5 \times 10^{-5} phcm2s1\,\mathrm{ph}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1} assuming a line width of 4.0 keV (1 sigma).Comment: 9 pages, 6 figures, accepted Ap

    Black Hole Spectroscopy: Testing General Relativity through Gravitational Wave Observations

    Full text link
    Assuming that general relativity is the correct theory of gravity in the strong field limit, can gravitational wave observations distinguish between black hole and other compact object sources? Alternatively, can gravitational wave observations provide a test of one of the fundamental predictions of general relativity? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originated from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black hole quasi-normal mode spectrum is characterized entirely by the black hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity, together with a numerical example.Comment: 19 pages, 7 figure
    corecore