2,016 research outputs found

    Effects of atomic diffraction on the Collective Atomic Recoil Laser

    Full text link
    We formulate a wave atom optics theory of the Collective Atomic Recoil Laser, where the atomic center-of-mass motion is treated quantum mechanically. By comparing the predictions of this theory with those of the ray atom optics theory, which treats the center-of-mass motion classically, we show that for the case of a far off-resonant pump laser the ray optics model fails to predict the linear response of the CARL when the temperature is of the order of the recoil temperature or less. This is due to the fact that in theis temperature regime one can no longer ignore the effects of matter-wave diffraction on the atomic center-of-mass motion.Comment: plain tex, 10 pages, 10 figure

    A Coastal N₂ Fixation Hotspot at the Cape Hatteras Front: Elucidating Spatial Heterogeneity in Diazotroph Activity Via Supervised Machine Learning

    Get PDF
    In the North Atlantic Ocean, dinitrogen (N2) fixation on the western continental shelf represents a significant fraction of basin‐wide nitrogen (N) inputs. However, the factors regulating coastal N2 fixation remain poorly understood, in part due to sharp physico‐chemical gradients and dynamic water mass interactions that are difficult to constrain via traditional oceanographic approaches. This study sought to characterize the spatial heterogeneity of N2 fixation on the western North Atlantic shelf, at the confluence of Mid‐ and South Atlantic Bight shelf waters and the Gulf Stream, in August 2016. Rates were quantified using the 15N2 bubble release method and used to build empirical models of regional N2 fixation via a random forest machine learning approach. N2 fixation rates were then predicted from high‐resolution CTD and satellite data to infer the variability of its depth and surface distributions, respectively. Our findings suggest that the frontal mixing zone created conditions conducive to exceptionally high N2 fixation rates (\u3e 100 nmol N L−1 d−1), which were likely driven by the haptophyte‐symbiont UCYN‐A. Above and below this hotspot, N2 fixation rates were highest on the shelf due to the high particulate N concentrations there. Conversely, specific N2 uptake rates, a biomass‐independent metric for diazotroph activity, were enhanced in the oligotrophic slope waters. Broadly, these observations suggest that N2 fixation is favored offshore but occurs continuously across the shelf. Nevertheless, our model results indicate that there is a niche for diazotrophs along the coastline as phytoplankton populations begin to decline, likely due to exhaustion of coastal nutrients

    Angular Forces Around Transition Metals in Biomolecules

    Full text link
    Quantum-mechanical analysis based on an exact sum rule is used to extract an semiclassical angle-dependent energy function for transition metal ions in biomolecules. The angular dependence is simple but different from existing classical potentials. Comparison of predicted energies with a computer-generated database shows that the semiclassical energy function is remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure

    Quantum Nondemolition State Measurement via Atomic Scattering in Bragg Regime

    Full text link
    We suggest a quantum nondemolition scheme to measure a quantized cavity field state using scattering of atoms in general Bragg regime. Our work extends the QND measurement of a cavity field from Fock state, based on first order Bragg deflection [9], to any quantum state based on Bragg deflection of arbitrary order. In addition a set of experimental parameters is provided to perform the experiment within the frame work of the presently available technology.Comment: 11 pages text, 4 eps figures, to appear in letter section of journal of physical society of Japa

    Taraxerol abundance as a proxy for in situ Mangrove sediment

    Get PDF
    Mangrove sediments are valuable archives of relative sea-level change if they can be distinguished in the stratigraphic record from other organic-rich depositional environments (e.g., freshwater swamps). Proxies for establishing environment of deposition can be poorly preserved (e.g., foraminifera) in mangrove sediment. Consequently, differentiating mangrove and freshwater sediment in the stratigraphic record is often subjective. We explore if biomarkers can objectively identify mangrove sediment with emphasis on their utility for reconstructing relative sea level. Our approach is specific to identifying in situ sediment, which has received less attention than identifying allochthonous mangrove organic matter. To characterize mangrove and non-mangrove (freshwater) environments, we measured n-alkane, sterol, and triterpenoid abundances in surface sediments at three sites in the Federated States of Micronesia. Elevated taraxerol abundance is diagnostic of sediment accumulating in mangroves and taraxerol is particularly abundant beneath monospecific stands of Rhizophora spp. Taraxerol was undetectable in freshwater sediment. Other triterpenoids are more abundant in mangrove sediment than in freshwater sediment. Using cores from Micronesian mangroves, we examine if biomarkers in sediments are indicative of in situ deposition in a mangrove, and have utility as a relative sea-level proxy. Taraxerol concentrations in cores are comparable to surface mangrove sediments, which indicates deposition in a mangrove. This interpretation is supported by pollen assemblages. Downcore taraxerol variability may reflect changing inputs from Rhizophora spp. rather than diagenesis. We propose that taraxerol is a proxy that differentiates between organic sediment that accumulated in mangrove vs. freshwater environments, lending it utility for reconstructing relative sea level

    The Formal Dynamism of Categories: Stops vs. Fricatives, Primitivity vs. Simplicity

    Get PDF
    Minimalist Phonology (MP; Pöchtrager 2006) constructs its theory based on the phonological epistemological principle (Kaye 2001) and exposes the arbitrary nature of standard Government Phonology (sGP) and strict-CV (sCV), particularly with reference to their confusion of melody and structure. For Pöchtrager, these are crucially different, concluding that place of articulation is melodic (expressed with elements), while manner of articulation is structural. In this model, the heads (xN and xO) can license and incorporate the length of the other into their own interpretation, that is xN influences xO projections as well as its own and vice versa. This dynamism is an aspect of the whole framework and this paper in particular will show that stops and fricatives evidence a plasticity of category and that, although fricatives are simpler in structure, stops are the more primitive of the two. This will be achieved phonologically through simply unifying the environment of application of the licensing forces within Pöchtrager's otherwise sound onset structure. In doing so, we automatically make several predictions about language acquisition and typology and show how lenition in Qiang (Sino-Tibetan) can be more elegantly explained

    Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    Get PDF
    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone

    CO2 Control of Trichodesmium N-2 Fixation, Photosynthesis, Growth rates, and Elemental Ratios: Implications for Past, Present, and Future Ocean Biogeochemistry

    Get PDF
    Diazotrophic marine cyanobacteria in the genus Trichodesmium contribute a large fraction of the new nitrogen entering the oligotrophic oceans, but little is known about how they respond to shifts in global change variables such as carbon dioxide (CO2) and temperature. We compared Trichodesmium dinitrogen (N2) and CO2 fixation rates during steady-state growth under past, current, and future CO2 scenarios, and at two relevant temperatures. At projected CO2 levels of year 2100 (76 Pa, 750 ppm), N2 fixation rates of Pacific and Atlantic isolates increased 35-100%, and CO2 fixation rates increased 15-128% relative to present day CO2 conditions (39 Pa, 380 ppm). CO2 mediated rate increases were of similar relative magnitude in both phosphorus (P)-replete and P-limited cultures, suggesting that this effect may be independent of resource limitation. Neither isolate could grow at 15 Pa (150 ppm) CO2, but N2 and CO2 fixation rates, growth rates, and nitrogen : phosophorus (N : P) ratios all increased significantly between 39 Pa and 152 Pa (1500 ppm). In contrast, these parameters were affected only minimally or not at all by a 4°C temperature change. Photosynthesis versus irradiance parameters, however, responded to both CO2 and temperature but in different ways for each isolate. These results suggest that by the end of this century, elevated CO2 could substantially increase global Trichodesmium N2 and CO2 fixation, fundamentally altering the current marine N and C cycles and potentially driving some oceanic regimes towards P limitation. CO2 limitation of Trichodesmium diazotrophy during past glacial periods could also have contributed to setting minimum atmospheric CO2 levels through downregulation of the biological pump. The relationship between marine N2 fixation and atmospheric CO2 concentration appears to be more complex than previously realized and needs to be considered in the context of the rapidly changing oligotrophic oceans
    corecore