2,651 research outputs found

    Dark matter density profiles: A comparison of nonextensive theory with N-body simulations

    Full text link
    Density profiles of simulated galaxy cluster-sized dark matter haloes are analysed in the context of a recently introduced nonextensive theory of dark matter and gas density distributions. Nonextensive statistics accounts for long-range interactions in gravitationally coupled systems and is derived from the fundamental concept of entropy generalisation. The simulated profiles are determined down to radii of ~1% of R_200. The general trend of the relaxed, spherically averaged profiles is accurately reproduced by the theory. For the main free parameter kappa, measuring the degree of coupling within the system, and linked to physical quantities as the heat capacity and the polytropic index of the self-gravitating ensembles, we find a value of -15. The significant advantage over empirical fitting functions is provided by the physical content of the nonextensive approach.Comment: 6 pages, 3 figures, accepted for publication in A&

    Cooperative protein transport in cellular organelles

    Full text link
    Compartmentalization into biochemically distinct organelles constantly exchanging material is one of the hallmarks of eukaryotic cells. In the most naive picture of inter-organelle transport driven by concentration gradients, concentration differences between organelles should relax. We determine the conditions under which cooperative transport, i.e. based on molecular recognition, allows for the existence and maintenance of distinct organelle identities. Cooperative transport is also shown to control the flux of material transiting through a compartmentalized system, dramatically increasing the transit time under high incoming flux. By including chemical processing of the transported species, we show that this property provides a strong functional advantage to a system responsible for protein maturation and sorting.Comment: 9 pages, 5 figure

    Generalized Fokker-Planck equation, Brownian motion, and ergodicity

    Full text link
    Microscopic theory of Brownian motion of a particle of mass MM in a bath of molecules of mass mMm\ll M is considered beyond lowest order in the mass ratio m/Mm/M. The corresponding Langevin equation contains nonlinear corrections to the dissipative force, and the generalized Fokker-Planck equation involves derivatives of order higher than two. These equations are derived from first principles with coefficients expressed in terms of correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath, we recover the results obtained previously for a model with instantaneous binary collisions. In general case, the equations contain additional corrections, quadratic in bath density, originating from a finite collision time. These corrections survive to order (m/M)2(m/M)^2 and are found to make the stationary distribution non-Maxwellian. Some relevant numerical simulations are also presented

    Fidelity of holonomic quantum computations in the case of random errors in the values of control parameters

    Full text link
    We investigate the influence of random errors in external control parameters on the stability of holonomic quantum computation in the case of arbitrary loops and adiabatic connections. A simple expression is obtained for the case of small random uncorrelated errors. Due to universality of mathematical description our results are valid for any physical system which can be described in terms of holonomies. Theoretical results are confirmed by numerical simulations.Comment: 7 pages, 3 figure

    Phenomenological approach to non-linear Langevin equations

    Full text link
    In this paper we address the problem of consistently construct Langevin equations to describe fluctuations in non-linear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property together with the macroscopic knowledge of the system is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time-reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models.Comment: LaTex file, 2 figures available upon request, to appear in Phys.Rev.

    Hamiltonian for coupled flux qubits

    Full text link
    An effective Hamiltonian is derived for two coupled three-Josephson-junction (3JJ) qubits. This is not quite trivial, for the customary "free" 3JJ Hamiltonian is written in the limit of zero inductance L. Neglecting the self-flux is already dubious for one qubit when it comes to readout, and becomes untenable when discussing inductive coupling. First, inductance effects are analyzed for a single qubit. For small L, the self-flux is a "fast variable" which can be eliminated adiabatically. However, the commonly used junction phases are_not_ appropriate "slow variables", and instead one introduces degrees of freedom which are decoupled from the loop current to leading order. In the quantum case, the zero-point fluctuations (LC oscillations) in the loop current diverge as L->0. Fortunately, they merely renormalize the Josephson couplings of the effective (two-phase) theory. In the coupled case, the strong zero-point fluctuations render the full (six-phase) wave function significantly entangled in leading order. However, in going to the four-phase theory, this uncontrollable entanglement is integrated out completely, leaving a computationally usable mutual-inductance term of the expected form as the effective interaction.Comment: REVTeX4, 16pp., one figure. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. Informal note. v2: completely rewritten; correction of final result and major expansion. v3: added numerical verification plus a discussion of Ref. [2

    Coarse-graining a restricted solid-on-solid model

    Full text link
    A procedure suggested by Vvedensky for obtaining continuum equations as the coarse-grained limit of discrete models is applied to the restricted solid-on-solid model with both adsorption and desorption. Using an expansion of the master equation, discrete Langevin equations are derived; these agree quantitatively with direct simulation of the model. From these, a continuum differential equation is derived, and the model is found to exhibit either Edwards-Wilkinson or Kardar-Parisi-Zhang exponents, as expected from symmetry arguments. The coefficients of the resulting continuum equation remain well-defined in the coarse-grained limit.Comment: Accepted for pubication in PR

    Markov Chain Modeling of Polymer Translocation Through Pores

    Full text link
    We solve the Chapman-Kolmogorov equation and study the exact splitting probabilities of the general stochastic process which describes polymer translocation through membrane pores within the broad class of Markov chains. Transition probabilities which satisfy a specific balance constraint provide a refinement of the Chuang-Kantor-Kardar relaxation picture of translocation, allowing us to investigate finite size effects in the evaluation of dynamical scaling exponents. We find that (i) previous Langevin simulation results can be recovered only if corrections to the polymer mobility exponent are taken into account and that (ii) the dynamical scaling exponents have a slow approach to their predicted asymptotic values as the polymer's length increases. We also address, along with strong support from additional numerical simulations, a critical discussion which points in a clear way the viability of the Markov chain approach put forward in this work.Comment: 17 pages, 5 figure

    Conservation, Dissipation, and Ballistics: Mesoscopic Physics beyond the Landauer-Buettiker Theory

    Full text link
    The standard physical model of contemporary mesoscopic noise and transport consists in a phenomenologically based approach, proposed originally by Landauer and since continued and amplified by Buettiker (and others). Throughout all the years of its gestation and growth, it is surprising that the Landauer-Buettiker approach to mesoscopics has matured with scant attention to the conservation properties lying at its roots: that is, at the level of actual microscopic principles. We systematically apply the conserving sum rules for the electron gas to clarify this fundamental issue within the standard phenomenology of mesoscopic conduction. Noise, as observed in quantum point contacts, provides the vital clue.Comment: 10 pp 3 figs, RevTe
    corecore