1,112 research outputs found

    Loop-Less Electric Dipole Moment of the Nucleon in the Standard Model

    Full text link
    We point out that the electric dipole moment of the neutron in the Standard Model is generated already at tree level to the second order in the weak interactions due to bound-state effects, without short-distance Penguin loops. The related contribution has a regular nonvanishing chiral limit and does not depend on the mass splitting between s and d quarks. We estimate it to be roughly 10^(-31)e*cm and expect a more accurate evaluation in the future. We comment on the connection between d_n and the direct CP-violation in D decays.Comment: 10 pages, 2 figure

    Compressible hydromagnetic nonlinearities in the predecoupling plasma

    Full text link
    The adiabatic inhomogeneities of the scalar curvature lead to a compressible flow affecting the dynamics of the hydromagnetic nonlinearities. The influence of the plasma on the evolution of a putative magnetic field is explored with the aim of obtaining an effective description valid for sufficiently large scales. The bulk velocity of the plasma, computed in the framework of the LambdaCDM scenario, feeds back into the evolution of the magnetic power spectra leading to a (nonlocal) master equation valid in Fourier space and similar to the ones discussed in the context of wave turbulence. Conversely, in physical space, the magnetic power spectra obey a Schroedinger-like equation whose effective potential depends on the large-scale curvature perturbations. Explicit solutions are presented both in physical space and in Fourier space. It is argued that curvature inhomogeneities, compatible with the WMAP 7yr data, shift to lower wavenumbers the magnetic diffusivity scale.Comment: 29 page

    Scalar Quarkonia at Finite Temperature

    Get PDF
    Masses and decay constants of the scalar quarkonia, χQ0(Q=b,c)\chi_{Q0} (Q=b,c) with quantum numbers IG(JPC)=0+(0++)I^G(J^{PC})=0^{+}(0^{++}) are calculated in the framework of the QCD sum rules approach both in vacuum and finite temperature. The masses and decay constants remain unchanged up to T≃100 MeVT\simeq100~MeV but they start to diminish with increasing the temperature after this point. At near the critic or deconfinement temperature, the decay constants reach approximately to 25% of their values in vacuum, while the masses are decreased about 6% and 23% for bottom and charm cases, respectively. The results at zero temperature are in a good consistency with the existing experimental values and predictions of the other nonperturbative approaches. Our predictions on the decay constants in vacuum as well as the behavior of the masses and decay constants with respect to the temperature can be checked in the future experiments.Comment: 12 Pages, 9 Figures and 2 Table

    Magnetized Turbulent Dynamo in Protogalaxies

    Get PDF
    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten time larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.Comment: accepted to ApJ, 35 pages, 3 figure

    Double-lepton polarizations in (B -> l^+ l^- gamma) decay

    Full text link
    Double-lepton polarization asymmetries in the (B -> l^+ l^- gamma) decay are calculated using the most general, model independent form of the effective Hamiltonian including all possible forms of the interaction. The dependencies of the asymmetries on new Wilson coefficients are investigated. The detectability the averaged double-lepton polarization asymmetries at LHC is also discussed.Comment: 20 pages, 7 PostScript figures, LaTeX formatte

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.

    On the effective action of the vacuum photon splitting in Lorentz-violating QED

    Full text link
    We consider one-loop radiative corrections from Lorentz- and CPT- violating extended QED to address the specific problem of finding explicitly an effective action describing amplitude of photon triple splitting. We show that it is not possible to find a nonzero photon triple splitting effective action, at least by using the derivative expansion method (at zero external momenta), up to leading order in the Lorentz- and CPT- violating parameter.Comment: 4 pages, version to appear in EP

    N=1 Non-Abelian Tensor Multiplet in Four Dimensions

    Full text link
    We carry out the N=1 supersymmetrization of a physical non-Abelian tensor with non-trivial consistent couplings in four dimensions. Our system has three multiplets: (i) The usual non-Abelian vector multiplet (VM) (A_\mu{}^I, \lambda^I), (ii) A non-Abelian tensor multiplet (TM) (B_{\mu\nu}{}^I, \chi^I, \varphi^I), and (iii) A compensator vector multiplet (CVM) (C_\mu{}^I, \rho^I). All of these multiplets are in the adjoint representation of a non-Abelian group G. Unlike topological theory, all of our fields are propagating with kinetic terms. The C_\mu{}^I-field plays the role of a Stueckelberg compensator absorbed into the longitudinal component of B_{\mu\nu}{}^I. We give not only the component lagrangian, but also a corresponding superspace reformulation, reconfirming the total consistency of the system. The adjoint representation of the TM and CVM is further generalized to an arbitrary real representation of general SO(N) gauge group. We also couple the globally N=1 supersymmetric system to supergravity, as an additional non-trivial confirmation.Comment: 18 pages, no figur
    • …
    corecore