7,002 research outputs found

    Comment on τ\tau decay puzzle

    Full text link
    We analize the current data on τ\tau-lepton decays and show that they are consistent with the Standard ModelComment: 5 pages, 1 figure (available from de authors), Latex, preprint IFT-P.022/9

    Algorithmic approach to adiabatic quantum optimization

    Full text link
    It is believed that the presence of anticrossings with exponentially small gaps between the lowest two energy levels of the system Hamiltonian, can render adiabatic quantum optimization inefficient. Here, we present a simple adiabatic quantum algorithm designed to eliminate exponentially small gaps caused by anticrossings between eigenstates that correspond with the local and global minima of the problem Hamiltonian. In each iteration of the algorithm, information is gathered about the local minima that are reached after passing the anticrossing non-adiabatically. This information is then used to penalize pathways to the corresponding local minima, by adjusting the initial Hamiltonian. This is repeated for multiple clusters of local minima as needed. We generate 64-qubit random instances of the maximum independent set problem, skewed to be extremely hard, with between 10^5 and 10^6 highly-degenerate local minima. Using quantum Monte Carlo simulations, it is found that the algorithm can trivially solve all the instances in ~10 iterations.Comment: 7 pages, 3 figure

    Relativistic field theories in a magnetic background as noncommutative field theories

    Full text link
    We study the connection of the dynamics in relativistic field theories in a strong magnetic field with the dynamics of noncommutative field theories (NCFT). As an example, the Nambu-Jona-Lasinio models in spatial dimensions d2d \geq 2 are considered. We show that this connection is rather sophisticated. In fact, the corresponding NCFT are different from the conventional ones considered in the literature. In particular, the UV/IR mixing is absent in these theories. The reason of that is an inner structure (i.e., dynamical form-factors) of neutral composites which plays an important role in providing consistency of the NCFT. An especially interesting case is that for a magnetic field configuration with the maximal number of independent nonzero tensor components. In that case, we show that the NCFT are finite for even dd and their dynamics is quasi-(1+1)-dimensional for odd dd. For even dd, the NCFT describe a confinement dynamics of charged particles. The difference between the dynamics in strong magnetic backgrounds in field theories and that in string theories is briefly discussed.Comment: 19 pages, REVTeX4, clarifications added, references added, to appear in Phys. Rev.

    Grid tool integration within the eMinerals Project

    Get PDF
    In this article we describe the eMinerals mini grid, which is now running in production mode. Thisis an integration of both compute and data components, the former build upon Condor, PBS and thefunctionality of Globus v2, and the latter being based on the combined use of the Storage ResourceBroker and the CCLRC data portal. We describe how we have integrated the middleware components,and the different facilities provided to the users for submitting jobs within such an environment. We willalso describe additional functionality we found it necessary to provide ourselves

    Enhanced Peculiar Velocities in Brane-Induced Gravity

    Get PDF
    The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the LCDM paradigm. The recent estimates of the large scale bulk flow by Watkins et al. are inconsistent at the nearly 3 sigma level with LCDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the Bullet Cluster (1E0657-57) is unlikely at a 6.5-5.8 sigma level, with an estimated probability between 3.3x10^{-11} and 3.6x10^{-9} in LCDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravity becomes higher-dimensional at ultra large distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2 sigma level with bulk flow observations. The occurrence of the Bullet Cluster in these theories is 10^4 times more probable than in LCDM cosmology.Comment: 15 pages, 6 figures. v2: added reference

    Strong Pinning in High Temperature Superconductors

    Full text link
    Detailed measurements of the critical current density jc of YBa2Cu3O7 films grown by pulsed laser deposition reveal the increase of jc as function of the filmthickness. Both this thickness dependence and the field dependence of the critical current are consistently described using a generalization of the theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024 (1991)]. From the model, we deduce values of the defect density (10^21 m^-3) and the elementary pinning force, which are in good agreement with the generally accepted values for Y2O3-inclusions. In the absence of clear evidence that the critical current is determined by linear defects or modulations of the film thickness, our model provides an alternative explanation for the rather universal field dependence of the critical current density found in YBa2Cu3O7 films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002

    Deep dives and aortic temperatures of emperor penguins: new directions for bio-logging at the isolated dive hole

    Get PDF
    In order to document deep (>100 m) dives and aortic temperature responses of emperor penguins (Aptenodytes forsteri) at an isolated dive hole, and also to evaluate a new catheterization technique, three birds were equipped with time depth recorders, temperature data loggers, and percutaneously-inserted aortic thermistors. After recovery from anesthesia, they were provided access for one day to the dive hole. The birds tolerated the experiment without complication. Mean diving duration (+ SE) of 83 dives was 5.9 + 3.1 min; 55% of dives were > 5.6 min, the previously determined aerobic dive limit; 36% were > 100 m in depth. Mean aortic temperatures during 3-h rest periods ranged from 37.3 + 0.2oC to 38.0 + 0.1oC. Mean dive temperature did not correlate with dive duration, and the grand mean of mean dive temperatures in each bird ranged from 38.3 + 0.2oC to 39.0 + 0.2oC; there was no evidence of core hypothermia during dives. Reliable, safe catheterizations, and the large percentage of deep/long dives of these birds should provide the basis both for future studies of pressure adaptation and hypoxemic tolerance in diving emperor penguins, and for investigation of deep-dive foraging behavior

    An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my

    Get PDF
    We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source ("Source 1") is too large: > 0.08", which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected ("Source 2") that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3-sigma upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10, which translates to an upper bound on such a star's initial mass of 15 M_Sun from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities.Comment: Minor text changes from Version 1. Appendix added detailing the determination of confidence level of non-association of point sources in two registered astronomical image

    Quantum properties of a non-Abelian gauge invariant action with a mass parameter

    Get PDF
    We continue the study of a local, gauge invariant Yang-Mills action containing a mass parameter, which we constructed in a previous paper starting from the nonlocal gauge invariant mass dimension two operator F_{\mu\nu} (D^2)^{-1} F_{\mu\nu}. We return briefly to the renormalizability of the model, which can be proven to all orders of perturbation theory by embedding it in a more general model with a larger symmetry content. We point out the existence of a nilpotent BRST symmetry. Although our action contains extra (anti)commuting tensor fields and coupling constants, we prove that our model in the limit of vanishing mass is equivalent with ordinary massless Yang-Mills theories. The full theory is renormalized explicitly at two loops in the MSbar scheme and all the renormalization group functions are presented. We end with some comments on the potential relevance of this gauge model for the issue of a dynamical gluon mass generation.Comment: 17 pages. v2: version accepted for publication in Phys.Rev.

    Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous Smallholder Environments

    No full text
    JRC, CCAFS jointly sponsored the workshop on June 13-14, 2012, at the JRC in Ispra, Italy, to identify avenues for exploiting remote sensing information to improving crop forecasting in smallholder farming environments. The workshop’s objectives were: 1) To advance the state-of-knowledge of data assimilation for crop yield forecasting; 2) To address challenges and needs for successful applications of data assimilation in forecasting crop yields in heterogeneous, smallholder environments; and, 3) To enhance collaboration and exchange of knowledge among data assimilation and crop forecasting groups. The workshop succeeded in bringing together scientists from around the world. This has enabled discussions on research and results and has greatly enhanced collaboration and exchange of knowledge, especially about data assimilation and crop forecasting
    corecore