62,608 research outputs found

    Assessing Aquatic Insect Flight Behavior with Sticky Traps

    Get PDF
    A suspended sticky trap was designed to analyze flight behavior of aquatic insects, including both direction and vertical distribution of flight. Specifications of trap construction are detailed. Possible applications were explored and preliminary results from the study of a small Indiana stream demonstrated primary upstream migration of females, and indicated vertical partitioning of flight activity at the species level

    Study of sample drilling techniques for Mars sample return missions

    Get PDF
    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed

    Cathodoluminescence of nanocrystalline Y2O3:Eu3+ with various Eu3+ concentrations

    Get PDF
    © The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Herein a study on the preparation and cathodoluminescence of monosized spherical nanoparticles of Y2O3:Eu3+ having a Eu3+ concentration that varies between 0.01 and 10% is described. The luminous efficiency and decay time have been determined at low a current density, whereas cathodoluminescence-microscopy has been carried out at high current density, the latter led to substantial saturation of certain spectral transitions. A novel theory is presented to evaluate the critical distance for energy transfer from Eu3+ ions in S6 to Eu3+ ions in C2 sites. It was found that Y2O3:Eu3+ with 1–2% Eu3+ has the highest luminous efficiency of 16lm/w at 15keV electron energy. Decay times of the emission from 5D0 (C2) and 5D1 (C2) and 5D0 (S6) levels were determined. The difference in decay time from the 5D0 (C2) and 5D1 (C2) levels largely explained the observed phenomena in the cathodoluminescence-micrographs recorded with our field emission scanning electron microscope

    Cathodoluminescence of Double Layers of Phosphor Particles

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.We present radiance measurements of particle layers of ZnO:Zn, Y2O3:Eu and Y2O2S:Eu bombarded with electrons at anode voltages between 1 and 15 kV. The layers described in this work refer to single component layers, double layers and two component mixtures. The phosphor layers are deposited on ITO-coated glass slides by settling; the efficiency of the cathodoluminescence is determined by summing the radiances and luminances in the reflected and transmitted modes respectively. The efficiency of a double layer of Y2O3:Eu on top of ZnO:Zn at high electron energy is significantly larger than the efficiency of a corresponding layer in which the two components are mixed. This result is interpreted in terms of the penetration-model, which predicts a larger efficiency for a high-voltage phosphor on top of a low-voltage phosphor. When a layer of the low-voltage phosphor ZnO:Zn is on top of the high-voltage phosphor Y2O3:Eu, we also observe a higher efficiency than that of the corresponding layer with both components mixed. In this case the efficiency increases due to suppression of charging in the Y2O3:Eu layer. Double layers of ZnO:Zn and Y2O2S:Eu did not show enhanced efficiency, because the size of the Y2O2S:Eu particles was too large to evoke the penetration effect. © The Author(s) 2014. Published by ECS

    A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States

    Full text link
    We propose a bootstrapping approach to generation of maximally path-entangled states of photons, so called ``NOON states''. Strong atom-light interaction of cavity QED can be employed to generate NOON states with about 100 photons; which can then be used to boost the existing experimental Kerr nonlinearities based on quantum coherence effects to facilitate NOON generation with arbitrarily large number of photons all within the current experimental state of the art technology. We also offer an alternative scheme that uses an atom-cavity dispersive interaction to obtain sufficiently high Kerr-nonlinearity necessary for arbitrary NOON generation

    Magnetic Structure and Spin Waves in the Kagom\'{e} Jarosite compound KFe3(SO4)2(OH)6{\bf KFe_3(SO_4)_2(OH)_6}

    Get PDF
    We present a detailed study of the magnetic structure and spin waves in the Fe jarosite compound KFe3(SO4)2(OH)6{\rm KFe_3(SO_4)_2(OH)_6} for the most general Hamiltonian involving one- and two-spin interactions which are allowed by symmetry. We compare the calculated spin-wave spectrum with the recent neutron scattering data of Matan {\it et al.} for various model Hamiltonians which include, in addition to isotropic Heisenberg exchange interactions between nearest (J1J_1) and next-nearest (J2J_2) neighbors, single ion anisotropy and Dzyaloshinskii-Moriya (DM) interactions. We concluded that DM interactions are the dominant anisotropic interaction, which not only fits all the splittings in the spin-wave spectrum but also reproduces the small canting of the spins out of the Kagom\'e plane. A brief discussion of how representation theory restricts the allowed magnetic structure is also given.Comment: 23 pages, 17 figures, submitted to Phys. Rev. B (March 2006

    A 6-12 GHz Analogue Lag-Correlator for Radio Interferometry

    Get PDF
    Aims: We describe a 6-12 GHz analogue correlator that has been developed for use in radio interferometers. Methods: We use a lag-correlator technique to synthesis eight complex spectral channels. Two schemes were considered for sampling the cross-correlation function, using either real or complex correlations, and we developed prototypes for both of them. We opted for the ``add and square'' detection scheme using Schottky diodes over the more commonly used active multipliers because the stability of the device is less critical. Results: We encountered an unexpected problem, in that there were errors in the lag spacings of up to ten percent of the unit spacing. To overcome this, we developed a calibration method using astronomical sources which corrects the effects of the non-uniform sampling as well as gain error and dispersion in the correlator.Comment: 14 pages, 21 figures, accepted for publication in A&
    corecore