9,437 research outputs found
Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model
A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies
A near-wall four-equation turbulence model for compressible boundary layers
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers
Thermal stability and nitrogen redistribution in the〈Si〉/Ti/W–N/Al metallization scheme
Backscattering spectrometry, Auger electron spectroscopy, and x‐ray diffraction have been used to monitor the thin‐film reactions and nitrogen redistribution in the 〈Si〉/Ti/W–N/Al metallization system. It is found that nitrogen in the W–N layer redistributes into Ti after annealing at temperatures above 500 °C. As a consequence of this redistribution of nitrogen, a significant amount of interdiffusion between Al and the underlayers is observed after annealing at 550 °C. This result contrasts markedly with that for the 〈Si〉/W–N/Al system, where no interdiffusion can be detected after the same thermal treatment. We attribute this redistribution of nitrogen to the stronger affinity of Ti for nitrogen than W. If the Ti layer is replaced by a sputtered TiSi_(2.3) film, no redistribution of nitrogen or reactions can be detected after annealing at 550 °C for 30 min
Ways of seeing : using filmaking to engage students with communities
Foucault referred to the authoritative ‘gaze’ that can objectify the users of public services and which continues to promote heroic narratives in many areas of professional practice by casting them in a passive role. In the UK, there has been a distinctive and growing discourse about the use and abuse of embedded ‘welfare’ system and within key professions there has been a number of ethical dilemmas and barriers in the quest for community engagement. Working within austerity and tight eligibility criteria has to some extent reinforced individualised pathologies about the causes of social problems and their potential solutions. Generating and exploring counterdiscourses which promote alternative and more challenging perspectives at an early stage in professional education is crucial to encourage students to think more actively about forging partnerships and co-production.
This paper shares our experiences of using filmmaking with first year students on the BA (Hons) Social Work where the process of reaching out to communities through a different medium builds in opportunities for students to be more active and open in their search for approaches and interventions which build on the strengths of communities. Students work in small groups to investigate an everyday issue in the community and alongside a range of suggested community project work, generate a short 3-5 minute film which represents different ways of seeing and capturing a range of perspectives on their selected issues. This co-learning approach is also supported by a team of tutors; a service user and graduate student who model the skills required as well as provide peer feedback for students to reflect upon, using double loops of learning experiences. Our presentation will draw on some of the students evaluation which documents the value of such experiential learning and some of the achievements and challenges in its first year including demonstration of one of the student group film
Semi-classical Characters and Optical Model Description of Heavy Ion Scattering, Direct Reactions, and Fusion at Near-barrier Energies
An approach is proposed to calculate the direct reaction (DR) and fusion
probabilities for heavy ion collisions at near-Coulomb-barrier energies as
functions of the distance of closest approach D within the framework of the
optical model that introduces two types of imaginary potentials, DR and fusion.
The probabilities are calculated by using partial DR and fusion cross sections,
together with the classical relations associated with the Coulomb trajectory.
Such an approach makes it possible to analyze the data for angular
distributions of the inclusive DR cross section, facilitating the determination
of the radius parameters of the imaginary DR potential in a less ambiguous
manner. Simultaneous -analyses are performed of relevant data for the
O+Pb system near the Coulomb-barrier energy
Development of a near-wall Reynolds-stress closure based on the SSG model for the pressure strain
In this research, a near-wall second-order closure based on the Speziable et al.(1991) or SSG model for the pressure-strain term is proposed. Unlike the LRR model, the SSG model is quasi-nonlinear and yields better results when applied to calculate rotating homogeneous turbulent flows. An asymptotic analysis near the wall is applied to both the exact and modeled, equations so that appropriate near-wall corrections to the SSG model and the modeled dissipation-rate equation can be derived to satisfy the physical wall boundary conditions as well as the asymptotic near-wall behavior of the exact equations. Two additional model constants are introduced and they are determined by calibrating against one set of near-wall channel flow data. Once determined, their values are found to remain constant irrespective of the type of flow examined. The resultant model is used to calculate simple turbulent flows, near separating turbulent flows, complex turbulent flows and compressible turbulent flows with a freestream Mach number as high as 10. In all the flow cases investigated, the calculated results are in good agreement with data. This new near-wall model is less ad hoc, physically and mathematically more sound and eliminates the empiricism introduced by Zhang. Therefore, it is quite general, as demonstrated by the good agreement achieved with measurements covering a wide range of Reynolds numbers and Mach numbers
Superpixel-based segmentation of muscle fibers in multi-channel microscopy
Background
Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice.
Results
We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with “ground-truth” segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher.
Conclusion
Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.National University of Singapore (Duke-NUS SRP Phase 2 Research Block Grant)Singapore. National Research Foundation (CREATE programme)Singapore-MIT Alliance for Research and Technology (SMART
Pressure Induced Hydration Dynamics of Membranes
Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics
of the hydration of the hexagonal phase in biological membranes show that (i)
the relaxation of the unit cell spacing is non-exponential in time; (ii) the
Bragg peaks shift smoothly to their final positions without significant
broadening or loss in crystalline order. This suggests that the hydration is
not diffusion limited but occurs via a rather homogeneous swelling of the whole
lattice, described by power law kinetics with an exponent .Comment: REVTEX 3, 10 pages,3 figures(available on request),#
Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the He + Bi System at Near-Coulomb-Barrier Energies
Based on an approach recently proposed by us, simultaneous
-analyses are performed for elastic scattering, direct reaction (DR)
and fusion cross sections data for the He+Bi system at
near-Coulomb-barrier energies to determine the parameters of the polarization
potential consisting of DR and fusion parts. We show that the data are well
reproduced by the resultant potential, which also satisfies the proper
dispersion relation. A discussion is given of the nature of the threshold
anomaly seen in the potential
- …