70 research outputs found

    PSS44 USTEKINUMAB IMPROVES WORK PRODUCTIVITY AND DECREASES WORKDAYS MISSED DUE TO PSORIASIS IN PATIENTS WITH MODERATE TO SEVERE PSORIASIS

    Get PDF

    Guggul for hyperlipidemia: A review by the Natural Standard Research Collaboration

    Get PDF
    Objective: To evaluate the scientific evidence on guggul for hyperlipidemia including expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing. Methods: Electronic searches were conducted in nine databases, 20 additional journals (not indexed in common databases), and bibliographies from 50 selected secondary references. No restrictions were placed on language or quality of publications. All literature collected pertained to efficacy in humans, dosing, precautions, adverse effects, use in pregnancy/lactation, interactions, alteration of laboratory assays, and mechanism of action. Standardized inclusion/exclusion criteria were utilized for selection. Results: Before 2003, most scientific evidence suggested that guggulipid elicits significant reductions in serum total cholesterol, low-density lipoprotein (LDL), and triglycerides, as well as elevations in high-density lipoprotein (HDL) [Kotiyal JP, Bisht DB, Singh DS. Double blind cross-over trial of gum guggulu (Commiphora mukul) Fraction A in hypercholesterolemia. J Res Indian Med Yoga Hom 1979;14(2):11-6; Kotiyal JP, Singh DS, Bisht DB. Gum guggulu (Commiphora mukul) fraction 'A' in obesity-a double-blind clinical trial. J Res Ayur Siddha 1985;6(1, 3, 4):20-35; Gaur SP, Garg RK, Kar AM, et al. Gugulipid, a new hypolipidaemic agent, in patients of acute ischaemic stroke: effect on clinical outcome, platelet function and serum lipids. Asia Pacif J Pharm 1997;12:65-9; Urizar NL, Liverman AB, Dodds DT, et al. A natural product that lowers cholesterol as an antagonist ligand for the FXR. Science 3 May 2002 [Science Express Reports]; Nityanand S, Srivastava JS, Asthana OP. Clinical trials with gugulipid. A new hypolipidaemic agent. J Assoc Physicians India 1989;37(5):323-8; Kuppurajan K, Rajagopalan SS, Rao TK, et al. Effect of guggulu (Commiphora mukul-Engl.) on serum lipids in obese, hypercholesterolemic and hyperlipemic cases. J Assoc Physicians India 1978;26(5):367-73; Gopal K, Saran RK, Nityanand S, et al. Clinical trial of ethyl acetate extract of gum gugulu (gugulipid) in primary hyperlipidemia. J Assoc Physicians India 1986;34(4):249-51; Agarwal RC, Singh SP, Saran RK, et al. Clinical trial of gugulipid-a new hypolipidemic agent of plant origin in primary hyperlipidemia. Indian J Med Res 1986;84:626-34; Verma SK, Bordia A. Effect of Commiphora mukul (gum guggulu) in patients of hyperlipidemia with special reference to HDL-cholesterol. Indian J Med Res 1988;87:356-60; Singh RB, Niaz MA, Ghosh S. Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary therapy in patients with hypercholesterolemia. Cardiovasc Drugs Ther 1994;8(4):659-64; Ghorai M, Mandal SC, Pal M, et al. A comparative study on hypocholesterolaemic effect of allicin, whole germinated seeds of bengal gram and guggulipid of gum gugglu. Phytother Res 2000;14(3):200-02]. However, most published studies were small and methodologically flawed. In August 2003, a well-designed trial reported small significant increases in serum LDL levels associated with the use of guggul compared to placebo [Szapary PO, Wolfe ML, Bloedon LT, et al. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. JAMA 2003;290(6):765-72]. No significant changes in total cholesterol, high-density lipoprotein (HDL), or triglycerides were measured. These results are consistent with two prior published case reports [Das Gupta R. Gugulipid: pro-lipaemic effect. J Assoc Physicians India 1990;38(12):346]. Conclusion: The effects of guggulipid in patients with high cholesterol are not clear, with some studies finding cholesterol-lowering effects, and other research suggesting no benefits. At this time, there is not enough scientific evidence to support the use of guggul for any medical condition. Guggul may cause stomach discomfort or allergic rash as well as other serious side effects and interactions. It should be avoided in pregnant or breast-feeding women and in children. Safety of use beyond 4 months has not been well studied

    Deducing the Temporal Order of Cofactor Function in Ligand-Regulated Gene Transcription: Theory and Experimental Verification

    Get PDF
    Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available

    Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model

    Get PDF
    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs

    Safety and efficacy of GABAA α5 antagonist S44819 in patients with ischaemic stroke: a multicentre, double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: S44819, a selective GABAA α5 receptor antagonist, reduces tonic post-ischaemic inhibition of the peri-infarct cortex. S44819 improved stroke recovery in rodents and increased cortical excitability in a transcranial magnetic stimulation study in healthy volunteers. The Randomized Efficacy and Safety Trial of Oral GABAA α5 antagonist S44819 after Recent ischemic Event (RESTORE BRAIN) aimed to evaluate the safety and efficacy of S44819 for enhancing clinical recovery of patients with ischaemic stroke. Methods: RESTORE BRAIN was an international, randomised, double-blind, parallel-group, placebo-controlled, multicentre phase 2 trial that evaluated the safety and efficacy of oral S44189 in patients with recent ischaemic stroke. The study was done in specialised stroke units in 92 actively recruiting centres in 14 countries: ten were European countries (Belgium, Czech Republic, France, Germany, Hungary, Italy, Netherlands, Poland, Spain, and the UK) and four were non-European countries (Australia, Brazil, Canada, and South Korea). Patients aged 18–85 years with acute ischaemic stroke involving cerebral cortex (National Institute of Health Stroke Scale [NIHSS] score 7–20) without previous disability were eligible for inclusion. Participants were randomly assigned to receive 150 mg S44819 twice a day, 300 mg S44819 twice a day, or placebo twice a day by a balanced, non-adaptive randomisation method with a 1:1:1 ratio. Treatment randomisation and allocation were centralised via the interactive web response system using computer-generated random sequences with a block size of 3. Blinding of treatment was achieved by identical appearance and taste of all sachets. Patients, investigators and individuals involved in the analysis of the trial were masked to group assignment. The primary endpoint was the modified Rankin Scale (mRS) score 90 days from onset of treatment, evaluated by shift analysis (predefined main analysis) or by dichotomised analyses using 0–1 versus 2–6 and 0–2 versus 3–6 cutoffs (predefined secondary analysis). Secondary endpoints were the effects of S44819 on the NIHSS and Montreal Cognitive Assessment (MoCA) scores, time needed to complete parts A and B of the Trail Making Test, and the Barthel index. Efficacy analyses were done on all patients who received at least one dose of treatment and had at least one mRS score taken after day 5 (specifically, on or after day 30). Safety was compared across treatment groups for all patients who received at least one dose of treatment. The study was registered at ClinicalTrials.gov, NCT02877615. Findings: Between Dec 19, 2016, and Nov 16, 2018, 585 patients were enrolled in the study. Of these, 197 (34%) were randomly assigned to receive 150 mg S44819 twice a day, 195 (33%) to receive 300 mg S44819 twice a day, and 193 (33%) to receive placebo twice a day. 189 (96%) of 197 patients in the 150 mg S44819 group, 188 (96%) of 195 patients in the 300 mg S44819 group, and 191 (99%) patients in the placebo group received at least one dose of treatment and had at least one mRS score taken after day 5, and were included in efficacy analyses. 195 (99%) of 197 patients in the 150 mg S44819 group, 194 (99%) of 195 patients in the 300 mg S44819 group, and 193 (100%) patients in the placebo group received at least one dose of treatment, and were included in safety analyses. The primary endpoint of mRS at day 90 did not differ between each of the two S44819 groups and the placebo group (OR 0·91 [95% CI 0·64–1·31]; p=0·80 for 150 mg S44819 compared with placebo and OR 1·17 [95% CI 0·81–1·67]; p=0·80 for 300 mg S44819 compared with placebo). Likewise, dichotomised mRS scores at day 90 (mRS 0–2 vs 3–6 or mRS 0–1 vs 2–6) did not differ between groups. Secondary endpoints did not reveal any significant group differences. The median NIHSS score at day 90 did not differ between groups (4 [IQR 2–8] in 150 mg S44819 group, 4 [2–7] in 300 mg S44819 group, and 4 [2–6] in placebo group), nor did the number of patients at day 90 with an NIHSS score of up to 5 (95 [61%] of 156 in 150 mg S44819 group, 106 [66%] of 161 in 300 mg S44819 group, and 104 [66%] of 157 in placebo group) versus more than 5 (61 [39%] in 150 mg S44819 group, 55 [34%] in 300 mg S44819 group, and 53 [34%] in placebo group). Likewise, the median MoCA score (22·0 [IQR 17·0–26·0] in 150 mg S44819 group, 23·0 [19·0–26·5] in 300 mg S44819 group, and 22·0 [17·0–26·0] in placebo group), time needed to complete parts A (50 s [IQR 42–68] in 150 mg S44819 group, 49 s [36–63] in 300 mg S44819 group, and 50 s [38–68] in placebo group) and B (107 s [81–144] in 150 mg S44819 group, 121 s [76–159] in 300 mg S44819 group, and 130 s [86–175] in placebo group) of the Trail Making Test, and the Barthel index (90 [IQR 60–100] in 150 mg S44819 group, 90 [70–100] in 300 mg S44819 group, and 90 [70–100] in placebo group) were similar in all groups. Number and type of adverse events were similar between the three groups. There were no drug-related adverse events and no drug-related deaths. Interpretation: There was no evidence that S44819 improved clinical outcome in patients after ischaemic stroke, and thus S44819 cannot be recommended for stroke therapy. The concept of tonic inhibition after stroke should be re-evaluated in humans. Funding: Servier

    Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta - regulation by selective estrogen receptor modulators and importance in breast cancer

    Get PDF
    Estrogens display intriguing tissue-selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer, for menopausal hormone replacement, and for fertility regulation. Certain compounds that act through the estrogen receptor (ER), now referred to as selective estrogen receptor modulators (SERMs), can demonstrate remarkable differences in activity in the various estrogen target tissues, functioning as agonists in some tissues but as antagonists in others. Recent advances elucidating the tripartite nature of the biochemical and molecular actions of estrogens provide a good basis for understanding these tissue-selective actions. As discussed in this thematic review, the development of optimal SERMs should now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at various gene regulatory sites. Cellular, biochemical, and structural approaches have also shown that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coregulator proteins. Growth factors and protein kinases that control the phosphorylation state of the complex also regulate the bioactivity of the ER. These interactions and changes determine the magnitude of the transcriptional response and the potency of different SERMs. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents
    corecore