579 research outputs found

    Speciation as a positive feedback loop between postzygotic and prezygotic barriers to gene flow

    Get PDF
    Speciation is intimately associated with the evolution of sex-and-reproduction-related traits, including those affecting hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation). Genes controlling such traits are not randomly distributed in the genome but are particularly abundant on the sex chromosomes. However, the evolutionary consequences of the sex linkage of genes involved in speciation have been little explored. Here, we present simulations of a continent-island diploid model that examines the effects of reduced recombination using both autosomal and sex-linked inheritance. We show first that linkage between genes affecting postzygotic and prezygotic isolation leads to a positive feedback loop in which both are strengthened. As species recognition evolves, genes causing hybrid incompatibility will hitchhike along with those improving premating isolation, leading to stronger hybrid incompatibility and thus increased pressure for further preference divergence. Second, we show that this loop effect is generally enhanced by sex linkage, because recombination is eliminated in the heterogametic sex, leading to tighter effective linkage between the two classes of genes and because natural selection is more efficient at sex-linked loci, as recessive alleles are not masked by dominance in the heterogametic sex. Accordingly, hitchhiking can be important in promoting speciation and can also lead to increased postzygotic isolation through adaptive evolution

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    Transcriptomic comparison of the retina in two mouse models of diabetes

    Get PDF
    Mouse models of type I diabetes offer the potential to combine genetic approaches with other pharmacological or physiological manipulations to investigate the pathophysiology and treatment of diabetic retinopathy. Type I diabetes is induced in mice through chemical toxins or can arise spontaneously from genetic mutations. Both models are associated with retinal vascular and neuronal changes. Retinal transcriptomic responses in C57BL/6J mice treated with streptozotocin and Ins2Akita/+ were compared after 3 months of hyperglycemia. Specific gene expression changes suggest a neurovascular inflammatory response in diabetic retinopathy. Genes common to the two models may represent the response of the retina to hyperglycemia, while changes unique to each model may represent time-dependent disease progression differences in the various models. Further investigation of the commonalities and differences between mouse models of type I diabetes may define cause and effect events in early diabetic retinopathy disease progression

    Context-Specific Protein Network Miner – An Online System for Exploring Context-Specific Protein Interaction Networks from the Literature

    Get PDF
    Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. Results: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. Conclusions: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/.Statistic

    Assessing Predation Risk to Threatened Fauna from their Prevalence in Predator Scats: Dingoes and Rodents in Arid Australia

    Get PDF
    The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids) scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis) were the only threatened species detected in <8% of dingo scats from any given site, suggesting that dingoes might not threaten them. However, consideration of dingo control effort revealed that plains mice distribution has largely retracted to the area where dingoes have been most heavily subjected to lethal control. Assessing the hypothetical predation rates of dingoes on dusky hopping-mice revealed that dingo predation alone has the potential to depopulate local hopping-mice populations within a few months. It was concluded that the occurrence of a given prey species in predator scats may be indicative of what the predator ate under the prevailing conditions, but in isolation, such data can have a poor ability to inform predation risk assessments. Some populations of threatened fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions

    Indiscriminate Males: Mating Behaviour of a Marine Snail Compromised by a Sexual Conflict?

    Get PDF
    Background: In promiscuous species, male fitness is expected to increase with repeated matings in an open-ended fashion (thereby increasing number of partners or probability of paternity) whereas female fitness should level out at some optimal number of copulations when direct and indirect benefits still outweigh the costs of courtship and copulation. After this fitness peak, additional copulations would incur female fitness costs and be under opposing selection. Hence, a sexual conflict over mating frequency may evolve in species where females are forced to engage in costly matings. Under such circumstance, if females could avoid male detection, significant fitness benefits from such avoidance strategies would be predicted. Methodology/Principal Findings: Among four Littorina species, one lives at very much higher densities and has a longer mating season than the other three species. Using video records of snail behaviour in a laboratory arena we show that males of the low-density species discriminate among male and female mucous trails, trailing females for copulations. In the high-density species, however, males fail to discriminate between male and female trails, not because males are unable to identify female trails (which we show using heterospecific females), but because females do not, as the other species, add a gender-specific cue to their trail. Conclusions/Significance: We conclude that there is likely a sexual conflict over mating frequency in the high-densit
    corecore