2,182 research outputs found

    An Invisible Quantum Tripwire

    Get PDF
    We present here a quantum tripwire, which is a quantum optical interrogation technique capable of detecting an intrusion with very low probability of the tripwire being revealed to the intruder. Our scheme combines interaction-free measurement with the quantum Zeno effect in order to interrogate the presence of the intruder without interaction. The tripwire exploits a curious nonlinear behaviour of the quantum Zeno effect we discovered, which occurs in a lossy system. We also employ a statistical hypothesis testing protocol, allowing us to calculate a confidence level of interaction-free measurement after a given number of trials. As a result, our quantum intruder alert system is robust against photon loss and dephasing under realistic atmospheric conditions and its design minimizes the probabilities of false positives and false negatives as well as the probability of becoming visible to the intruder.Comment: Improved based on reviewers comments; 5 figure

    The bronchodilator response in preschool children: A systematic review

    Get PDF
    BACKGROUND: The bronchodilator response (BDR) is frequently used to support diagnostic and therapeutic decision-making for children who wheeze. However, there is little evidence-based guidance describing the role of BDR testing in preschool children and it is unclear whether published cut-off values, which are derived from adult data, can be applied to this population. METHODS: We searched MEDLINE, EMBASE, Web of Science, and Cochrane databases (inception-September 2015) for studies reporting response to a bronchodilator in healthy preschool children, response following placebo inhalation, and the diagnostic efficacy of BDR compared with a clinical diagnosis of asthma/recurrent wheezing. FINDINGS: We included 14 studies. Thirteen studies provided BDR data from healthy preschool children. Two studies reported response to placebo in preschool children with asthma/recurrent wheezing. Twelve studies compared BDR measurements from preschool children with asthma/recurrent wheeze to those from healthy children and seven of these studies reported diagnostic efficacy. Significant differences between the BDR measured in healthy preschool children compared with that in children with asthma/recurrent wheeze were demonstrated in some, but not all studies. Techniques such as interrupter resistance, oscillometry, and plethysmography were more consistently successfully completed than spirometry. Between study heterogeneity precluded determination of an optimum technique. INTERPRETATION: There is little evidence to suggest spirometry-based BDR can be used in the clinical assessment of preschool children who wheeze. Further evaluation of simple alternative techniques is required. Future studies should recruit children in whom airways disease is suspected and should evaluate the ability of BDR testing to predict treatment response

    Acceptability, Precision and Accuracy of 3D Photonic Scanning for Measurement of Body Shape in a Multi-Ethnic Sample of Children Aged 5-11 Years: The SLIC Study.

    Get PDF
    Information on body size and shape is used to interpret many aspects of physiology, including nutritional status, cardio-metabolic risk and lung function. Such data have traditionally been obtained through manual anthropometry, which becomes time-consuming when many measurements are required. 3D photonic scanning (3D-PS) of body surface topography represents an alternative digital technique, previously applied successfully in large studies of adults. The acceptability, precision and accuracy of 3D-PS in young children have not been assessed

    Wigs, disguises and child's play : solidarity in teacher education

    Get PDF
    It is generally acknowledged that much contemporary education takes place within a dominant audit culture, in which accountability becomes a powerful driver of educational practices. In this culture both pupils and teachers risk being configured as a means to an assessment and target-driven end: pupils are schooled within a particular paradigm of education. The article discusses some ethical issues raised by such schooling, particularly the tensions arising for teachers, and by implication, teacher educators who prepare and support teachers for work in situations where vocational aims and beliefs may be in in conflict with instrumentalist aims. The article offers De Certeau’s concept of ‘la perruque’ to suggest an opening to playful engagement for human ends in education, as a way of contending with and managing the tensions generated. I use the concept to recover a concept of solidarity for teacher educators and teachers to enable ethical teaching in difficult times

    Independent Effects of Reynolds and Mach Numbers on the Aerodynamics of an Iced Swept Wing

    Get PDF
    Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for a 13.3%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the ONERA F1 pressurized wind tunnel with Reynolds numbers of 1.610(exp 6) to 11.910(exp 6) and Mach numbers of 0.09 to 0.34. Five different configurations were investigated using fully 3D, high-fidelity artificial ice shapes that maintain nearly all of the 3D ice accretion features documented in prior icing-wind tunnel tests. These large, leadingedge ice shapes were nominally based upon airplane holding in icing conditions scenarios. For three of these configurations, lower-fidelity simulations were also built and tested. The results presented in this paper show that while Reynolds and Mach number effects are important for quantifying the clean-wing performance, there is very little to no effect for an iced-wing with 3D, high-fidelity artificial ice shapes or 3D smooth ice shapes with grit roughness. These conclusions are consistent with the large volume of past research on icedairfoils. However, some differences were also noted for the associated stalling angle of the iced swept wing and for various lower-fidelity versions of the leading-edge ice accretion. More research is planned to further investigate the key features of ice accretion geometry that must be simulated in lower-fidelity versions in order to capture the essential aerodynamics

    Independent Effects of Reynolds Number and Mach Number on the Aerodynamics of an Iced Swept Wing

    Get PDF
    Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional (3D) icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind tunnel testing was carried out for a 13.3-percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind tunnel testing was conducted at the Office National dEtudes et de Recherches Arospatiales (ONERA) F1 pressurized wind tunnel with Reynolds numbers of 1.6 x 10(exp 6) to 11.9 x 10(exp 6 ) and Mach numbers of 0.09 to 0.34. Five different configurations were investigated using fully 3D, high-fidelity artificial ice shapes that maintain nearly all of the 3D ice-accretion features documented in prior icing wind tunnel tests. These large, leading-edge ice shapes were nominally based upon airplane holding in icing conditions scenarios. For three of these configurations, lower fidelity simulations were also built and tested. The results presented in this paper show that while Reynolds and Mach number effects are important for quantifying the clean-wing performance, there is very little to no effect for an iced wing with 3D, high-fidelity artificial ice shapes or 3D smooth ice shapes with grit roughness. These conclusions are consistent with the large volume of past research on iced airfoils. However, some differences were also noted for the associated stalling angle of the iced swept wing and for various lower fidelity versions of the leading-edge ice accretion. More research is planned to further investigate the key features of ice-accretion geometry that must be simulated in lower fidelity versions in order to capture the essential aerodynamics

    Summary of Ice Shape Geometric Fidelity Studies on an Iced Swept Wing

    Get PDF
    Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. Some of those ice shapes are based on aircraft certification requirements. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA (Office national d'etudes et de recherches aerospatiales) F1 facility, respectively. The data collected in the Wichita State University wind tunnel provided a low-Reynolds number baseline study while the pressurized F1 facility produced data over a wide range of Reynolds and Mach numbers with the highest Reynolds number studied being approximately Re = 11.9 by 10 (sup 6). Three different fidelity representations were created based on three different icing conditions. Lower-fidelity ice shapes were created by lofting a smooth ice shape between cross-section cuts of the high-fidelity ice shape. Grit roughness was attached to this smooth ice shape as another fidelity variant. The data indicates that the geometric fidelity of the ice shapes resulted in significant differences in lift and drag. These results were similar at both facilities over the wide range of test conditions utilized

    Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

    Get PDF
    Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University's Beech Memorial Wind Tunnel, and high Reynolds number tests were conducted at ONERA's F1 wind tunnel. The aerodynamic performance data from the two facilities were compared at matched or similar Reynolds and Mach number to ensure that the results and trends observed at low Reynolds number could be applied and continued to high Reynolds number. For both clean and iced configurations, the data from Wichita State University and F1 agreed well at matched or similar Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations. There appeared to be 0.2-0.3deg offset in the angle of attack between the Wichita State University and F1 data, possibly due to different flow angularities in the test sections of the two facilities. There was also an offset in the drag values between the two facilities from an unknown cause. Overall, the data compared very well between the low Reynolds number test at Wichita State University tunnel and the high Reynolds number test at F1. This indicated that data from the low Reynolds number tests could be used to understand iced-swept-wing aerodynamics at high Reynolds number
    • …
    corecore