905 research outputs found

    Artificial Brains and Hybrid Minds

    Get PDF
    The paper develops two related thought experiments exploring variations on an ‘animat’ theme. Animats are hybrid devices with both artificial and biological components. Traditionally, ‘components’ have been construed in concrete terms, as physical parts or constituent material structures. Many fascinating issues arise within this context of hybrid physical organization. However, within the context of functional/computational theories of mentality, demarcations based purely on material structure are unduly narrow. It is abstract functional structure which does the key work in characterizing the respective ‘components’ of thinking systems, while the ‘stuff’ of material implementation is of secondary importance. Thus the paper extends the received animat paradigm, and investigates some intriguing consequences of expanding the conception of bio-machine hybrids to include abstract functional and semantic structure. In particular, the thought experiments consider cases of mind-machine merger where there is no physical Brain-Machine Interface: indeed, the material human body and brain have been removed from the picture altogether. The first experiment illustrates some intrinsic theoretical difficulties in attempting to replicate the human mind in an alternative material medium, while the second reveals some deep conceptual problems in attempting to create a form of truly Artificial General Intelligence

    The Computational Brain.

    Get PDF
    Keywords: reductionism, neural networks, distributed coding, Karl Pribram, computational neuroscience, receptive field 1.1 The broad goal of this book, expressed at the start, is ``to understand how neurons give rise to a mental life.'' A mental reductionism is assumed in this seductively simple formulation. Indeed, the book represents reductionism at its best, as the authors guide the reader through the many intermediate levels that link neurons with mental life. In so doing they attack a problem that has persisted for some decades in the neurosciences, since the development of single-cell recording methods. The problem is that millions of neurons participate in every behaviorally meaningful activity, but we normally record from only one neuron at a time, or at best a handful. The temptation is great to overestimate the one-millionth sample obtained from a single neuron, to interpret its activity as detecting a perceptual situation or driving a motor response. This approach, seemingly inescapable in the 1960s, became untenable, but there were no concrete alternatives. Evoked potential techniques gave only a gross average of activity, too vague to pin down mechanisms, and early PDP (parallel distributed processing, or artificial neural network) models were too biologically unrealistic to provide viable interpretations of the single-cell data. Churchland and Sejnowski show how distributed models can now attack this problem, providing significant insights into brain function in a number of domains. 1.2 The book has several parts. First, the authors introduce their approach, combining anatomical, physiological, behavioral and modelling methods in an integrated interdisciplinary attack on specific functional systems. There follows a review of enough anatomy and neurophysiology to make the authors' viewpoint clear and to provide a background for integrating PDP modelling into specific problems in the neurosciences. The heart of the book is a series of chapters reviewing particular models that have been successful in increasing our understanding of the functioning of biological brains. Models of reflex reactions in invertebrates, of locomotion, the vestibulo-ocular reflex in primates

    Stability Analysis of Asynchronous States in Neuronal Networks with Conductance-Based Inhibition

    Get PDF
    Oscillations in networks of inhibitory interneurons have been reported at various sites of the brain and are thought to play a fundamental role in neuronal processing. This Letter provides a self-contained analytical framework that allows numerically efficient calculations of the population activity of a network of conductance-based integrate-and-fire neurons that are coupled through inhibitory synapses. Based on a normalization equation this Letter introduces a novel stability criterion for a network state of asynchronous activity and discusses its perturbations. The analysis shows that, although often neglected, the reversal potential of synaptic inhibition has a strong influence on the stability as well as the frequency of network oscillations

    The Explication Defence of Arguments from Reference

    Get PDF
    In a number of influential papers, Machery, Mallon, Nichols and Stich have presented a powerful critique of so-called arguments from reference, arguments that assume that a particular theory of reference is correct in order to establish a substantive conclusion. The critique is that, due to cross-cultural variation in semantic intuitions supposedly undermining the standard methodology for theorising about reference, the assumption that a theory of reference is correct is unjustified. I argue that the many extant responses to Machery et al.’s critique do little for the proponent of an argument from reference, as they do not show how to justify the problematic assumption. I then argue that it can in principle be justified by an appeal to Carnapian explication. I show how to apply the explication defence to arguments from reference given by Andreasen (for the biological reality of race) and by Churchland (against the existence of beliefs and desires)

    Levels of explanation in biological psychology

    Get PDF
    Until recently, the notions of function and multiple realization were supposed to save the autonomy of psychological explanations. Furthermore, the concept of supervenience presumably allows both dependence of mind on brain and non-reducibility of mind to brain, reconciling materialism with an independent explanatory role for mental and functional concepts and explanations. Eliminativism is often seen as the main or only alternative to such autonomy. It gladly accepts abandoning or thoroughly reconstructing the psychological level, and considers reduction if successful as equivalent with elimination. In comparison with the philosophy of mind, the philosophy of biology has developed more subtle and complex ideas about functions, laws, and reductive explanation than the stark dichotomy of autonomy or elimination. It has been argued that biology is a patchwork of local laws, each with different explanatory interests and more or less limited scope. This points to a pluralistic, domain-specific and multi-level view of explanations in biology. Explanatory pluralism has been proposed as an alternative to eliminativism on the one hand and methodological dualism on the other hand. It holds that theories at different levels of description, like psychology and neuroscience, can co-evolve, and mutually influence each other, without the higher-level theory being replaced by, or reduced to, the lower-level one. Such ideas seem to tally with the pluralistic character of biological explanation. In biological psychology, explanatory pluralism would lead us to expect many local and non-reductive interactions between biological, neurophysiological, psychological and evolutionary explanations of mind and behavior. This idea is illustrated by an example from behavioral genetics, where genetics, physiology and psychology constitute distinct but interrelated levels of explanation. Accounting for such a complex patchwork of related explanations seems to require a more sophisticated and precise way of looking at levels than the existing ideas on (reductive and non-reductive) explanation in the philosophy of mind

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    Agent-based Social Psychology: from Neurocognitive Processes to Social Data

    Full text link
    Moral Foundation Theory states that groups of different observers may rely on partially dissimilar sets of moral foundations, thereby reaching different moral valuations. The use of functional imaging techniques has revealed a spectrum of cognitive styles with respect to the differential handling of novel or corroborating information that is correlated to political affiliation. Here we characterize the collective behavior of an agent-based model whose inter individual interactions due to information exchange in the form of opinions are in qualitative agreement with experimental neuroscience data. The main conclusion derived connects the existence of diversity in the cognitive strategies and statistics of the sets of moral foundations and suggests that this connection arises from interactions between agents. Thus a simple interacting agent model, whose interactions are in accord with empirical data on conformity and learning processes, presents statistical signatures consistent with moral judgment patterns of conservatives and liberals as obtained by survey studies of social psychology.Comment: 11 pages, 4 figures, 2 C codes, to appear in Advances in Complex System

    Knowledge, science and death: the theory of brain-sign

    Get PDF
    In today’s paradigmatic climate, the possibility of knowledge, and therefore science, still depends upon our being conscious. However, no scientifically accepted account of consciousness exists. In recent years I have developed the theory of brain-sign which replaces consciousness as a wholly physical neural condition. The first tenet is that the brain is a causal organ, not a knowledge organ. The second is that brain-sign, used in inter-neural communication for uncertain or imprecise collective action, derives at each moment from the causal orientation of the brain. Signs are ubiquitous bio-physical entities. Thus there is no problematic dualism, consciousness and world. We now have two accounts of the brain phenomenon. The first (consciousness) is an inexplicable physical anomaly. The second (brain-sign) belongs in the physical universe, and fulfils a crucial neurobiological function. With brain-sign theory we even ‘discover’ that we do not know we are alive or will die

    The Ontology of Intentional Agency in Light of Neurobiological Determinism: Philosophy Meets Folk Psychology

    Get PDF
    The moot point of the Western philosophical rhetoric about free will consists in examining whether the claim of authorship to intentional, deliberative actions fits into or is undermined by a one-way causal framework of determinism. Philosophers who think that reconciliation between the two is possible are known as metaphysical compatibilists. However, there are philosophers populating the other end of the spectrum, known as the metaphysical libertarians, who maintain that claim to intentional agency cannot be sustained unless it is assumed that indeterministic causal processes pervade the action-implementation apparatus employed by the agent. The metaphysical libertarians differ among themselves on the question of whether the indeterministic causal relation exists between the series of intentional states and processes, both conscious and unconscious, and the action, making claim for what has come to be known as the event-causal view, or between the agent and the action, arguing that a sort of agent causation is at work. In this paper, I have tried to propose that certain features of both event-causal and agent-causal libertarian views need to be combined in order to provide a more defendable compatibilist account accommodating deliberative actions with deterministic causation. The ‘‘agent-executed-eventcausal libertarianism’’, the account of agency I have tried to develop here, integrates certain plausible features of the two competing accounts of libertarianism turning them into a consistent whole. I hope to show in the process that the integration of these two variants of libertarianism does not challenge what some accounts of metaphysical compatibilism propose—that there exists a broader deterministic relation between the web of mental and extra-mental components constituting the agent’s dispositional system—the agent’s beliefs, desires, short-term and long-term goals based on them, the acquired social, cultural and religious beliefs, the general and immediate and situational environment in which the agent is placed, etc. on the one hand and the decisions she makes over her lifetime on the basis of these factors. While in the ‘‘Introduction’’ the philosophically assumed anomaly between deterministic causation and the intentional act of deciding has been briefly surveyed, the second section is devoted to the task of bridging the gap between compatibilism and libertarianism. The next section of the paper turns to an analysis of folk-psychological concepts and intuitions about the effects of neurochemical processes and prior mental events on the freedom of making choices. How philosophical insights can be beneficially informed by taking into consideration folk-psychological intuitions has also been discussed, thus setting up the background for such analysis. It has been suggested in the end that support for the proposed theory of intentional agency can be found in the folk-psychological intuitions, when they are taken in the right perspective
    • …
    corecore