1,267 research outputs found

    Surface-plasmon-enhanced light scattering from microscopic spheres

    Get PDF
    Copyright © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 83 (2003) and may be found at http://link.aip.org/link/?APPLAB/83/3006/1The enhanced light scattering from microscopic latex spheres placed in the optical field associated with a surface-plasmon resonance is explored. Spheres of 200 nm diameter are placed on an optically thin gold film that supports the surface-plasmon and the scattered intensity is then measured as a function of scattering angle. This is compared to the scattering profiles obtained from spheres placed on a bare glass substrate. In both cases, the experimental data are compared to theory. This system is of interest in the field of optical biosensing

    Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell

    Get PDF
    S. A. Jewell, S. L. Cornford, F. Yang, P. S. Cann, and J. R. Sambles, Physical Review E, Vol. 80, article 041706 (2009) "Copyright © 2009 by the American Physical Society."The alignment properties and distribution of flow speed during Poiseuille flow through a microchannel of a nematic liquid crystal in a cell with homeotropic surface alignment has been measured using a combination of conoscopy, fluorescence confocal polarizing microscopy, and time-lapse imaging. Two topologically distinct director profiles, with associated fluid velocity fields, are found to exist with the preferred state dictated by the volumetric flow rate of the liquid crystal. The results show excellent agreement with model data produced using the Ericksen-Leslie nematodynamics theory

    Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    Get PDF
    International audienceStructure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviou

    Completability vs (In)completeness

    Get PDF
    In everyday conversation, no notion of “complete sentence” is required for syntactic licensing. However, so-called “fragmentary”, “incomplete”, and abandoned utterances are problematic for standard formalisms. When contextualised, such data show that (a) non-sentential utterances are adequate to underpin agent coordination, while (b) all linguistic dependencies can be systematically distributed across participants and turns. Standard models have problems accounting for such data because their notions of ‘constituency’ and ‘syntactic domain’ are independent of performance considerations. Concomitantly, we argue that no notion of “full proposition” or encoded speech act is necessary for successful interaction: strings, contents, and joint actions emerge in conversation without any single participant having envisaged in advance the outcome of their own or their interlocutors’ actions. Nonetheless, morphosyntactic and semantic licensing mechanisms need to apply incrementally and subsententially. We argue that, while a representational level of abstract syntax, divorced from conceptual structure and physical action, impedes natural accounts of subsentential coordination phenomena, a view of grammar as a “skill” employing domain-general mechanisms, rather than fixed form-meaning mappings, is needed instead. We provide a sketch of a predictive and incremental architecture (Dynamic Syntax) within which underspecification and time-relative update of meanings and utterances constitute the sole concept of “syntax”

    Using Nonlinear Response to Estimate the Strength of an Elastic Network

    Full text link
    Disordered networks of fragile elastic elements have been proposed as a model of inner porous regions of large bones [Gunaratne et.al., cond-mat/0009221, http://xyz.lanl.gov]. It is shown that the ratio Γ\Gamma of responses of such a network to static and periodic strain can be used to estimate its ultimate (or breaking) stress. Since bone fracture in older adults results from the weakening of porous bone, we discuss the possibility of using Γ\Gamma as a non-invasive diagnostic of osteoporotic bone.Comment: 4 pages, 4 figure

    Hydrous Carbonatitic Liquids Drive CO2 Recycling From Subducted Marls and Limestones

    Get PDF
    This research was supported by the Italian Ministry of Education, University, and Research (MIUR) program PRIN2017 and by the Deep Carbon Observatory (DCO). We are greatly indebted to Andrea Risplendente for careful examination of run charges at the Electron Microprobe.Pelagic limestones are subducted in a variety of subduction zones worldwide. Despite the geochemical relevance of systems enriched in CaCO3, previous experimental investigations mostly focused on carbonated pelites, with low Ca/(Ca+Mg+Fe) ratio. We present the compositions and the formation conditions of liquids in the model system CaO‐Al2O3‐SiO2‐H2O‐CO2 (CASHC), building on phase relationships in the subsystems CHC and CSHC, where a second critical endpoint was suggested at temperatures as low as 515 °C, and 3.2 GPa. Multianvil experiments were performed at 4.2 and 6.0 GPa on five bulk compositions at variable Ca/Si/Al ratios. H2O contents vary from 5.6 to 21 wt%. Aragonite + kyanite + vapor and minor lawsonite form at 700 °C, replaced by zoisite/grossular at 800 °C. Between 850 °C and 950 °C, a complex sequence of textural features is observed upon quenching of a single volatile‐rich liquid phase formed at run conditions. Precipitates include dendritic CaCO3, silicate glass, and Al‐rich whiskers. The bulk composition of such hydrous carbonatitic liquids is retrieved by image analysis on X‐ray maps, showing Ca/Si ratio increasing with pressure and temperature. Hydrous Ca‐carbonatitic liquids are efficient media for scavenging volatiles from subducted crustal material and for metasomatizing the mantle wedge.Ministry of Education, Universities and Research (MIUR)Deep Carbon Observatory (DCO

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≀10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid
    • 

    corecore