1,272 research outputs found

    Efficient grid-based method in nonequilibrium Green's function calculations. Application to model atoms and molecules

    Full text link
    We propose and apply the finite-element discrete variable representation to express the nonequilibrium Green's function for strongly inhomogeneous quantum systems. This method is highly favorable against a general basis approach with regard to numerical complexity, memory resources, and computation time. Its flexibility also allows for an accurate representation of spatially extended hamiltonians, and thus opens the way towards a direct solution of the two-time Schwinger/Keldysh/Kadanoff-Baym equations on spatial grids, including e.g. the description of highly excited states in atoms. As first benchmarks, we compute and characterize, in Hartree-Fock and second Born approximation, the ground states of the He atom, the H2_2 molecule and the LiH molecule in one spatial dimension. Thereby, the ground-state/binding energies, densities and bond-lengths are compared with the direct solution of the time-dependent Schr\"odinger equation.Comment: 11 pages, 5 figures, submitted to Physical Review

    The H.E.S.S. II GRB Program

    Full text link
    Gamma-ray bursts (GRBs) are some of the most energetic and exotic events in the Universe, however their behaviour at the highest energies (>10 GeV) is largely unknown. Although the Fermi-LAT space telescope has detected several GRBs in this energy range, it is limited by the relatively small collection area of the instrument. The H.E.S.S. experiment has now entered its second phase by adding a fifth telescope of 600 m2^{2} mirror area to the centre of the array. This new telescope increases the energy range of the array, allowing it to probe the sub-100 GeV range while maintaining the large collection area of ground based gamma-ray observatories, essential to probing short-term variability at these energies. We will present a description of the GRB observation scheme used by the H.E.S.S. experiment, summarising the behaviour and performance of the rapid GRB repointing system, the conditions under which potential GRB repointings are made and the data analysis scheme used for these observations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    A Comprehensive Survey of Brane Tilings

    Get PDF
    An infinite class of 4d4d N=1\mathcal{N}=1 gauge theories can be engineered on the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from the gauge/gravity correspondence to local model building in string phenomenology. Brane tilings fully encode the gauge theories on the D3-branes and have substantially simplified their connection to the probed geometries. The purpose of this paper is to push the boundaries of computation and to produce as comprehensive a database of brane tilings as possible. We develop efficient implementations of brane tiling tools particularly suited for this search. We present the first complete classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and the corresponding brane tilings. This classification is of interest to both physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide

    Nonequilibrium properties of strongly correlated artificial atoms - a Green's functions approach

    Full text link
    A nonequilibrium Green's functions (NEGF) approach for spatially inhomogeneous, strongly correlated artificial atoms is presented and applied to compute the time-dependent properties while starting from a (correlated) initial few-electron state at finite temperatures. In the regime of moderate to strong coupling, we consider the Kohn mode of a three-electron system in a parabolic confinement excited by a short pulsed classical laser field treated in dipole approximation. In particular, we numerically confirm that this mode is preserved within a conserving (e.g. Hartree-Fock or second Born) theory

    First order Mott transition at zero temperature in two dimensions: Variational plaquette study

    Full text link
    The nature of the metal-insulator Mott transition at zero temperature has been discussed for a number of years. Whether it occurs through a quantum critical point or through a first order transition is expected to profoundly influence the nature of the finite temperature phase diagram. In this paper, we study the zero temperature Mott transition in the two-dimensional Hubbard model on the square lattice with the variational cluster approximation. This takes into account the influence of antiferromagnetic short-range correlations. By contrast to single-site dynamical mean-field theory, the transition turns out to be first order even at zero temperature.Comment: 6 pages, 5 figures, version 2 with additional results for 8 bath site

    Pairing of charged particles in a quantum plasmoid

    Full text link
    We study a quantum spherically symmetric object which is based on radial plasma oscillations. Such a plasmoid is supposed to exist in a dense plasma containing electrons, ions, and neutral particles. The method of creation and annihilation operators is applied to quantize the motion of charged particles in a self-consistent potential. We also study the effective interaction between oscillating particles owing to the exchange of a virtual acoustic wave, which is excited in the neutral component of plasma. It is shown that this interaction can be attractive and result in the formation of ion pairs. We discuss possible applications of this phenomenon in astrophysical and terrestrial plasmas.Comment: 17 pages, no figures, two columns, LaTeX2e; paper was significantly revised; title was changed; 16 new references were included; the discussion on ion-acoustic waves was added to Sec. 2; Secs. 3 and 4 were shortened; a more detailed discussion was added to Sec. 7; accepted for publication to J.Phys.

    Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.

    Get PDF
    The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    A New Linear Logic for Deadlock-Free Session-Typed Processes

    Get PDF
    The π -calculus, viewed as a core concurrent programming language, has been used as the target of much research on type systems for concurrency. In this paper we propose a new type system for deadlock-free session-typed π -calculus processes, by integrating two separate lines of work. The first is the propositions-as-types approach by Caires and Pfenning, which provides a linear logic foundation for session types and guarantees deadlock-freedom by forbidding cyclic process connections. The second is Kobayashi’s approach in which types are annotated with priorities so that the type system can check whether or not processes contain genuine cyclic dependencies between communication operations. We combine these two techniques for the first time, and define a new and more expressive variant of classical linear logic with a proof assignment that gives a session type system with Kobayashi-style priorities. This can be seen in three ways: (i) as a new linear logic in which cyclic structures can be derived and a CYCLE -elimination theorem generalises CUT -elimination; (ii) as a logically-based session type system, which is more expressive than Caires and Pfenning’s; (iii) as a logical foundation for Kobayashi’s system, bringing it into the sphere of the propositions-as-types paradigm
    • …
    corecore