56 research outputs found

    The role of positronium decoherence in the studies of positron annihilation in matter

    Full text link
    A small difference between the energy of the para-positronium (p-Ps) and ortho-positronium (o-Ps) states suggests the possibility of superposition of p-Ps and o-Ps during the formation of positronium (Ps) from pre-Ps terminating its migration in the matter in a void ('free volume'). It is shown that such a superposition decohere in the basis of p-Ps and o-Ps and the decoherence time is estimated. The time scale of the decoherence estimated here motivates respective correction in decomposition of the positron annihilation lifetime spectra. The way of the correction is sketched. The timescale of the decoherence suggests a need of awareness when experimental data from positron annihilation techniques are processed. More generally, the superposited state of Ps should contribute to the evolution theory of positronium in matter.Comment: 15 pages, 6 figure

    System Response Kernel Calculation for List-mode Reconstruction in Strip PET Detector

    Get PDF
    Reconstruction of the image in Positron Emission Tomographs (PET) requires the knowledge of the system response kernel which describes the contribution of each pixel (voxel) to each tube of response (TOR). This is especially important in list-mode reconstruction systems, where an efficient analytical approximation of such function is required. In this contribution, we present a derivation of the system response kernel for a novel 2D strip PET.Comment: 10 pages, 2 figures; Presented at Symposium on applied nuclear physics and innovative technologies, Cracow, 03-06 June 201

    A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays

    Full text link
    All of the present methods for calibration and monitoring of TOF-PET scanner detectors utilize radioactive isotopes such as e.g. 22^{22}Na or 68^{68}Ge, which are placed or rotate inside the scanner. In this article we describe a novel method based on the cosmic rays application to the PET calibration and monitoring methods. The concept allows to overcome many of the drawbacks of the present methods and it is well suited for newly developed TOF-PET scanners with a large longitudinal field of view. The method enables also monitoring of the quality of the scintillator materials and in general allows for the continuous quality assurance of the PET detector performance.Comment: 10 pages, 7 figure

    Application of Compressive Sensing Theory for the Reconstruction of Signals in Plastic Scintillators

    Get PDF
    Compressive Sensing theory says that it is possible to reconstruct a measured signal if an enough sparse representation of this signal exists in comparison to the number of random measurements. This theory was applied to reconstruct signals from measurements of plastic scintillators. Sparse representation of obtained signals was found using SVD transform.Comment: 7 pages, 3 figures; Presented at Symposium on applied nuclear physics and innovative technologies, Cracow, 03-06 June 201

    Determination of the map of efficiency of the J-PET detector with the GATE package

    Full text link
    A novel PET detector consisting of strips of polymer scintillators is being developed by the J-PET Collaboration. The map of efficiency and the map of geometrical acceptance of the 2-strip J-PET scanner are presented. Map of efficiency was determined using the Monte Carlo simulation software GATE based on GEANT4. Both maps were compared using method based on the chi2 test.Comment: 14 pages, 9 figures, proceeding from conference Symposium on Positron Emission Tomography: http://koza.if.uj.edu.pl/pet-symposium-2013
    corecore