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Reconstruction of the image in Positron Emission Tomographs (PET)
requires the knowledge of the system response kernel which describes the
contribution of each pixel (voxel) to each tube of response (TOR). This
is especially important in list-mode reconstruction systems, where an effi-
cient analytical approximation of such function is required. In this contri-
bution, we present a derivation of the system response kernel for a novel
2D strip PET.
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1. Introduction

The Positron Emission Tomograph (PET) works by estimating the ra-
dioactive fluid density (tracer) from the measurements of the γ quanta emit-
ted from the beta plus (β+) decay. The two quanta are emitted simultane-
ously and almost back-to-back. We will call such emission an event. The γ
are detected in the detectors surrounding the patient. Detecting two quanta
yields a tube of response passing through the emission point. The better the
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spatial resolution of the detection the thinner is the tube giving a better re-
construction. Currently, all PET scanners perform the measurements using
the non-organic scintillating crystals and the spatial resolution is controlled
by the crystal size which can be as small as few millimeters across.

Our group is working currently on a prototype PET using the long plastic
scintillator strips where the spatial resolution is obtained from the time-of-
flight measurements [3–5]. Achieving sufficient time resolution (less than
100 ps) is the main technological challenge, however, the novel hardware
requires also the suitable adaptation of the reconstruction algorithm.

This contribution is concerned with the calculation of the system kernel
in the 2D image reconstruction in the axial plane of our strip PET detector.
It is organized as follows: in Section 2 we describe the detector geometry and
measurement errors, in Section 3 the principles of the List-mode Expectation
Maximization Algorithm is described, and in the following sections we derive
the system response kernel.

2. Detector geometry

In its final form, our detector should consist of strips of scintillators
arranged on a cylinder. The strips are aligned with the axis of the cylinder.
We will start with a simpler 2D geometry — two parallel line segments of
scintillators of the length L at the distance 2R̄ (see figure 1). This is, anyway,
a necessary step as our first prototype will consist of two bars of scintillators.
This is, in a sense, a minimal configuration required for testing. The real
idealization here is neglecting the scintillator thickness.

Fig. 1. Detector geometry.
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A photomultiplier tube is attached to the end of each strip. The γ quanta
can scatter in the scintillator and produce light which then propagates along
the scintillator to the photomultipliers. By measuring the time at which light
reaches the photomultiplier, we can estimate the position at which γ had
crossed the scintillator

z̃u = 1
2 csci

(
T̃ul − T̃ur

)
, z̃d = 1

2 csci

(
T̃dl − T̃dr

)
. (1)

We use tildas to mark the measured quantities as opposed to the exact ones.
The csci denotes the effective speed of light in the scintillator. It takes into
account both the actual speed of light in scintillator and the elongation of the
optical path due to reflections. We have estimated this to be approximately
1.3×108 m/s for the scintillators we use. Combining the time measurements
from the two scintillators, we can estimate the position of the emission point
on the line joining the upper and lower crossing points

∆̃l = 1
2 c
((
T̃ul + T̃ur

)
−
(
T̃dl + T̃dr

))
, (2)

where ∆l is the difference of distances of the reconstructed point (y, z) from
the upper and lower detection points (see figure 1).

Those quantities are, of course, subject to measurement errors and are
related to exact ones by

z̃y = zy + εzy , y = u, d , ∆̃l = ∆l + ε∆l . (3)

We assume that the errors ε are normally distributed with some corre-
lation matrix C. In general, the magnitude of the errors will depend on the
place, where the γ hit the scintillator C = C(zu, zd). This matrix is a nec-
essary and important input for the reconstruction algorithm. Under some
plausible assumptions, which are beyond the scope of this contribution, this
matrix can be parametrized by three functions

C =

σ2
z(zu) 0 γ(zu)

0 σ2
z(zd) −γ(zd)

γ(zu) −γ(zd) σ2
∆l(zu, zd)

 , (4)

where
σ2
z(z) =

〈
ε2
u(d)(z)

〉
, σ2

∆l(zu, zd) =
〈
ε2

∆l(zu, zd)
〉

(5)

and
γ(z) = 〈εzu(z)ε∆l(z, zd)〉 = −〈εzd(z)ε∆l(zu, z)〉 . (6)
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The zu, zd and ∆l are related to the coordinates (y, z) of the emission
point and the emission angle θ by the formulas

zu = z +
(
R̄− y

)
tan θ ,

zd = z −
(
R̄+ y

)
tan θ ,

∆l = −2y
√

1 + tan2 θ , (7)

and, conversely,

tan θ =
zu − zd

2R̄
,

y = −1

2

∆l√
1 + tan2 θ

=
2R̄∆l√

zu − zd + 4R̄2
,

z =
1

2
(zu + zd + 2y tan θ) =

1

2

(
zu + zd +

(zu − zd)∆l√
zu − zd + 4R̄2

)
. (8)

3. List-mode reconstruction

Given good enough time resolution, our detector using the time-of-flight
technique could reconstruct each individual event with sufficient accuracy
to measure the emitter density directly. Currently, however, this is not the
case and the measurements errors have to be incorporated into the recon-
struction using a statistical approach. Almost every current reconstruction
algorithm is based on likelihood maximization approach described in [6, 7].
This work is concerned with binned data. However, because of the advance
of the technology most of the scanners work in the list-mode where every
single detected event is recorded separately. The extensions of the likelihood
maximization approach to this case was done in [1, 2].

Here, we provide a very brief introduction to this algorithm, for details
the Reader is referred to [2]. Let us denote the system response kernel
by P (ẽ|i). This is defined as probability that a detected event emitted from
pixel i was reconstructed as ẽ. Given this probability for each emitter density
ρ, we can calculate the probability of observing the particular set of N
events [1]

P ({ẽ1, . . . , ẽN} |ρ) =
∏
j

∑
i

P (ẽj |i)
ρ(i)s(i)∑
i ρ(i)s(i)

. (9)

The s(i) is the sensitivity of the pixel e.g. the probability that an event
originating from pixel i will be detected at all. Together s(i) and P (ẽj |i)
provide the complete model of the detector.
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The reconstruction algorithm consists of finding the distribution ρ that
maximizes this probability, or more accurately its logarithm — the likeli-
hood. That is achieved using the iterative Expectation Maximization (EM)
algorithm [2]

ρ(l)(t+1) =
N∑
j=1

P (ẽj |l)ρ(l)t

M∑
i=1

P (ẽj |i)s(i)ρ(i)t
. (10)

The sum over j runs over all collected events {ẽj}. Considering that up to
hundred millions of events can be collected during a single scan, this is a
very time-consuming calculation. Finding an efficient approximation for the
system response kernel is of a paramount importance.

4. System response kernel

To calculate P (ẽ|i), we start with p(ẽ|e) — the probability that an
event e will be detected as ẽ. This includes the possibility of an event not
being detected

s(e) ≡
∫
d ẽ p(ẽ|e) ≤ 1 . (11)

The s(e) is the sensitivity of an event — the probability that the event will
be detected. With this definition

P (ẽ|i) =
p(ẽ|i)
s(i)

, (12)

where
p(ẽ|i) = π−1

∫
y,z∈i

∫
d θ p(ẽ|y, z, θ) (13)

and
s(i) = π−1

∫
d ẽ p(ẽ|i) =

∫
y,z∈i

∫
d θ s(y, z, θ) . (14)

We assume that every event reaching the detector is detected so the s(e)
is given solely by the geometrical constraints

s(e) =

{
1 zu ∈ [−L/2, L/2] ∧ zd ∈ [−L/2, L/2]

0 otherwise
. (15)

This is somewhat more complicated in the image space

s(y, z, θ) =

{
1 tan θ ∈

[
max

(
−

1
2
L+z

R−y ,
− 1

2
L+z

R+y

)
, min

( 1
2
L−z
R−y ,

1
2
L+z

R+y

)]
0 otherwise

.

(16)
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We will also need the sensitivity of the image point (y, z)

s(y, z) = π−1

∫
d θ s(y, z, θ) = π−1(θmax − θmin) (17)

with

θmin = arctan max

(
−

1
2L+ z

R− y
,
−1

2L+ z

R+ y

)
,

θmax = arctan min

(
1
2L− z
R− y

,
1
2L+ z

R+ y

)
. (18)

As discussed in the previous section, the errors are normally distributed

p(ẽ|e) = s(e)
det−

1
2 C(e)

(2π)
3
2

exp

(
−1

2
(ẽ− e)TC−1(e)(ẽ− e)

)
, (19)

where

∆e = e(z, y, θ)− e
(
z̃, ỹ, θ̃

)
=

z +
(
R̄− y

)
tan θ − z̃ −

(
R̄− ỹ

)
tan θ̃

z −
(
R̄+ y

)
tan θ − z̃ +

(
R̄+ ỹ

)
tan θ̃

−2y
√

1 + tan2 θ + 2ỹ
√

1 + tan2 θ

 .

(20)
We will now construct an approximation for the formula (12). We start

by calculating

p(ẽ|y, z) = π−1

∫
d θ p(ẽ|y, z, θ) . (21)

The first approximation we make is to assume that the correlation ma-
trix C is depending weakly on e and we can approximate it by its value at ẽ.
The integral (21) becomes then

p(ẽ|y, z) = π−1 det−
1
2 C(ẽ)

(2π)
3
2

∫
d θ s(e) exp

(
−1

2
(ẽ− e)TC−1(ẽ)(ẽ− e)

)
.

(22)
We will approximate this integral using the saddle-point approximation.

To this end, we first expand the ∆e in

∆θ = θ − θ̃ , (23)

∆e ≈ ~o∆θ2 + ~a∆θ +~b (24)
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with

~o =

 − (∆y + ỹ −R) tan θ̃ cos−2 θ̃

− (∆y + ỹ +R) tan θ̃ cos−2 θ̃

− (∆y + ỹ ) cos−1 θ̃
(

1 + 2 tan2 θ̃
)
 , (25)

~a =

 − (∆y + ỹ −R) cos−2 θ̃

− (∆y + ỹ +R) cos−2 θ̃

−2 (∆y + ỹ ) cos−1 θ̃ tan θ̃

 , (26)

and

~b =

∆z −∆y tan θ̃

∆z −∆y tan θ̃

−2∆y cos−1 θ̃

 , (27)

where
∆y = y − ỹ and ∆z = z − z̃ . (28)

After inserting (24) into the exponent of (22), we obtain the expression

1
2

(
~o∆θ2 + ~a∆θ +~b

)
C−1

(
~o∆θ2 + ~a∆t+~b

)
(29)

which we truncate to the quadratic order(
~oC−1~b+ 1

2~aC
−1~a
)

∆θ2 + ~aC−1~b∆θ + 1
2
~bC−1~b . (30)

After differentiating with respect to ∆θ, we obtain the equation for the
minimum (

2~oC−1~b+ ~aC−1~a
)

∆θ + ~aC−1~b = 0 (31)

with the solution

∆θmin = −
~bC−1~a

~aC−1~a+ 2~oC−1~b
. (32)

Denoting
τ = ∆θ −∆θmin , (33)

we rewrite Eq. (30) as

1

2

(
~aC−1~a+ 2~oC−1~b

)
τ2 +

1

2

~bC−1~b−

(
~aC−1~b

)2

~aC−1~a+ 2~oC−1~b

 . (34)
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Finally, we obtain

p(ẽ|y, z) ≈ det−
1
2 C(ẽ)

(2π)
3
2

exp

−1

2

~bC−1~b−

(
~bC−1~a

)2

~aC−1~a+ 2~oC−1~b




×π−1

∫
d τ s(y, z, θ) exp

(
−1

2
τ2
(
~aC−1~a+ 2~oC−1~b

))
. (35)

If we assume that ẽ is sufficiently far from the edge of the detector, then we
can neglect the sensitivity factor s(y, z, θ), and after Gaussian integration
we obtain

p(ẽ|y, z) ≈ det−
1
2 C

2π
√
~aC−1~a+ 2~oC−1~b

π−1

× exp

−1

2

~bC−1~b−

(
~bC−1~a

)2

~aC−1~a+ 2~oC−1~b


 . (36)

We still need to perform the integration over the pixel. We will just
approximated it by the value of (36) at its center

p(ẽ|i) ≈ V (i)p(ẽ|yi, zi) (37)

and
P (ẽ|i) ≈ p(ẽ|yi, zi)

s(yi, zi)
, (38)

where (yi, zi) denotes the center of pixel i.

5. Validation

To validate our calculations, we compare the formulas (13) and (36) for
few selected events. The biggest issue here is the estimation of the correlation
matrix C. We will consider the case of diagonal correlation matrix not
depending on the positions

C−1 =


1
σ2
z

0 0

0 1
σ2
z

0

0 0 1
σ2

∆l

 . (39)

From our measurements, we estimate

σz ≈ 10 mm , σ∆l ≈ 63 mm . (40)
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We then consider events with y = 300 mm and angles zero, and 45◦

(see figure 2). The z = 0 and 300 respectively. For the detector, we use
R = 450mm and L = 1000mm.

Fig. 2. Two of the events used for validation. The reconstructed point is at ỹ =

300 mm and reconstructed angles are 0◦ and 45◦.

It is clear that the formula (36) is non-negligible only in a limited region
around the reconstruction point. To estimate this region, we will use only
the first term from the exponent. This a homogeneous polynomial of the
second order in ∆y and ∆z so it defines a ellipse around reconstruction point
given by the equation

~bC−1~b = R2 . (41)

The region of the interest is defined as the three sigma ellipse (R = 3).
For each event, we scan the formulas (13) and (36) along the horizontal

and vertical line segments based on the bounding box of the one σ ellipse (see
figure 2). For this choice of parameters, the two formulas were practically
indistinguishable.

6. Summary

We have presented a derivation of the system response kernel for a PET
detector based on time-of-flight measurements in two parallel scintillators
strips. The resulting formula for the kernel is still quite complicated. For
each event, the expression in the exponent is a rational function in vari-
ables ∆y and ∆z. We could envisage further simplification, but this can
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be problematic without detailed knowledge of the detector geometry/size
and the matrix C(e). However, we believe that our formula provides a very
good starting point for further approximations once the detector geometry
is fixed.

The biggest simplification we have made is to assume that the scintilla-
tors have no thickness. In reality, they can be up to 20 mm thick. A simplest
approach would be to incorporate this into the correlation matrix. However,
our preliminary calculations show that the resulting errors are not Gaussian.
This is a subject of an ongoing investigation.
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