2,278 research outputs found
Dispersive representation of the pion vector form factor in decays
We propose a dispersive representation of the charged pion vector form factor
that is consistent with chiral symmetry and fulfills the constraints imposed by
analyticity and unitarity. Unknown parameters are fitted to the very precise
data on decays obtained by Belle, leading to a
good description of the corresponding spectral function up to a
squared invariant mass GeV. We discuss the effect of isospin
corrections, and obtain the values of low energy observables. For larger values
of , this representation is complemented with a phenomenological description
to allow its implementation in the new TAUOLA hadronic currents.Comment: 22 pages, 4 figures. Determination of rho(770) pole parameters
substantially improved using a new method, based on rational approximants.
Other results unchanged. Version to be published in EPJ
Moduli Spaces and Formal Operads
Let overline{M}_{g,n} be the moduli space of stable algebraic curves of genus
g with n marked points. With the operations which relate the different moduli
spaces identifying marked points, the family (overline{M}_{g,n})_{g,n} is a
modular operad of projective smooth Deligne-Mumford stacks, overline{M}. In
this paper we prove that the modular operad of singular chains
C_*(overline{M};Q) is formal; so it is weakly equivalent to the modular operad
of its homology H_*(overline{M};Q). As a consequence, the "up to homotopy"
algebras of these two operads are the same. To obtain this result we prove a
formality theorem for operads analogous to Deligne-Griffiths-Morgan-Sullivan
formality theorem, the existence of minimal models of modular operads, and a
characterization of formality for operads which shows that formality is
independent of the ground field.Comment: 36 pages (v3: some typographical corrections
A Cartan-Eilenberg approach to Homotopical Algebra
In this paper we propose an approach to homotopical algebra where the basic
ingredient is a category with two classes of distinguished morphisms: strong
and weak equivalences. These data determine the cofibrant objects by an
extension property analogous to the classical lifting property of projective
modules. We define a Cartan-Eilenberg category as a category with strong and
weak equivalences such that there is an equivalence between its localization
with respect to weak equivalences and the localised category of cofibrant
objets with respect to strong equivalences. This equivalence allows us to
extend the classical theory of derived additive functors to this non additive
setting. The main examples include Quillen model categories and functor
categories with a triple, in the last case we find examples in which the class
of strong equivalences is not determined by a homotopy relation. Among other
applications, we prove the existence of filtered minimal models for \emph{cdg}
algebras over a zero-characteristic field and we formulate an acyclic models
theorem for non additive functors
- …
