93 research outputs found

    Invariant currents in lossy acoustic waveguides with complete local symmetry

    Full text link
    We implement the concept of complete local symmetry in lossy acoustic waveguides. Despite the presence of losses, the existence of a spatially invariant current is shown theoretically and observed experimentally. We demonstrate how this invariant current leads to the generalization of the Bloch and parity theorems for lossy systems defining a mapping of the pressure field between symmetry related spatial domains. Using experimental data we verify this mapping with remarkable accuracy. For the performed experiment we employ a construction technique based on local symmetries which allows the design of setups with prescribed perfect transmission resonances in the lossless case. Our results reveal the fundamental role of symmetries in restricted spatial domains and clearly indicate that completely locally symmetric devices constitute a promising class of setups, regarding the manipulation of wave propagation.Comment: 11 pages, 5 figure

    Acoustic characterization of Hofstadter butterfly with resonant scatterers

    Full text link
    We are interested in the experimental characterization of the Hofstadter butterfly by means of acoustical waves. The transmission of an acoustic pulse through an array of 60 variable and resonant scatterers periodically distribued along a waveguide is studied. An arbitrary scattering arrangement is realized by using the variable length of each resonator cavity. For a periodic modulation, the structures of forbidden bands of the transmission reproduce the Hofstadter butterfly. We compare experimental, analytical, and computational realizations of the Hofstadter butterfly and we show the influence of the resonances of the scatterers on the structure of the butterfly

    Duality of bounded and scattering wave systems with local symmetries

    Full text link
    We investigate the spectral properties of a class of hard-wall bounded systems, described by potentials exhibiting domain-wise different local symmetries. Tuning the distance of the domains with locally symmetric potential from the hard wall boundaries leads to extrema of the eigenenergies. The underlying wavefunction becomes then an eigenstate of the local symmetry transform in each of the domains of local symmetry. These extrema accumulate towards eigenenergies which do not depend on the position of the potentials inside the walls. They correspond to perfect transmission resonances of the associated scattering setup, obtained by removing the hard walls. We argue that this property characterizes the duality between scattering and bounded systems in the presence of local symmetries. Our findings are illustrated at hand of a numerical example with a potential consisting of two domains of local symmetry, each one comprised of Dirac ? barriers.Comment: 8 pages, 6 figure

    Perfect absorption in mirror-symmetric acoustic metascreens

    Full text link
    Mirror-symmetric acoustic metascreens producing perfect absorption independently of the incidence side are theoretically and experimentally reported in this work. The mirror-symmetric resonant building blocks of the metascreen support symmetric and antisymmetric resonances that can be tuned to be at the same frequency (degenerate resonances). The geometry of the building blocks is optimized to critically couple both the symmetric and the antisymmetric resonances at the same frequency allowing perfect absorption of sound from both sides of the metascreen. A hybrid analytical model based on the transfer matrix method and the modal decomposition of the exterior acoustic field is developed to analyze the scattering properties of the metascreen. The resulting geometry is 3D printed and experimentally tested in an impedance tube. Experimental results agree well with the theoretical predictions proving the efficiency of these metascreens for the perfect absorption of sound in the ventilation problems

    Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane

    Get PDF
    [Otros] Dans cette revue, nous présentons des résultats sur l'absorption acoustique parfaite sub-longueur d'onde faisant appel à des métamatériaux acoustiques avec des résonateurs Helmholtz pour différentes configurations. L'absorption parfaite à basse fréquence nécessite une augmentation du nombre d'états aux basses fréquences ainsi que de trouver les bonnes conditions pour une adaptation d'impédance avec le milieu environnant. Si en outre, on souhaite réduire les dimensions géométriques des structures proposées pour des questions pratiques, on peut utiliser des résonateurs locaux judicieusement conçus afin d'attendre une absorption parfaite sub-longueur d'onde. Les résonateurs de Helmholtz se sont révélés de bons candidats en raison de leur accordabilité aisée de la géométrie, donc de la fréquence de résonance, de la fuite d'énergie et des pertes intrinsèques. Lorsqu'ils sont branchés à un guide d'ondes ou à un milieu environnant, ils se comportent comme des systèmes ouverts, avec pertes et résonances caractérisés par leur fuite d'énergie et leurs pertes intrinsèques. L'équilibre entre ces deux aspects représente la condition de couplage critique et donne lieu à un maximum d'absorption d'énergie. Le mécanisme de couplage critique est ici représenté dans le plan de fréquence complexe afin d'interpréter la condition d'adaptation d'impédance. Dans cette revue, nous discutons en détail la possibilité d'obtenir une absorption parfaite par ces conditions de couplage critiques dans différents systèmes tels que la réflexion (à un port), la transmission (à deux ports) ou les systèmes à trois ports.[EN] In this review, we present the results on sub-wavelength perfect acoustic absorption using acoustic metamaterials made of Helmholtz resonators with different setups. Low frequency perfect absorption requires to increase the number of states at low frequencies and finding the good conditions for impedance matching with the background medium. If, in addition, one wishes to reduce the geometric dimensions of the proposed structures for practical issues, one can use properly designed local resonators and achieve subwavelength perfect absorption. Helmholtz resonators have been shown good candidates due to their easy tunability of the geometry, so of the resonance frequency, the energy leakage and the intrinsic losses. When plugged to a waveguide or a surrounding medium they behave as open, lossy and resonant systems characterized by their energy leakage and intrinsic losses. The balance between these two represents the critical coupling condition and gives rise to maximum energy absorption. The critical coupling mechanism is represented here in the complex frequency plane in order to interpret the impedance matching condition. In this review we discuss in detail the possibility to obtain perfect absorption by these critical coupling conditions in different systems such as reflection (one-port), transmission (two-ports) or three-ports systems.The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Étoiles Montantes of the Région Pays de la Loire. NJ acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICINN) through grant ¿Juan de la Cierva-Incorporación¿ (IJC2018-037897- I). This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology).Romero-García, V.; Jimenez, N.; Theocharis, G.; Achilleos, V.; Merkel, A.; Richoux, O.; Tournat, V.... (2020). Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane. Comptes Rendus Physique. 21(7-8):713-749. https://doi.org/10.5802/crphys.32S713749217-8[1] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells, Nat. Mater., Volume 4 (2005) no. 6, pp. 455-459[2] Derode, A.; Roux, P.; Fink, M. Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., Volume 75 (1995) no. 23, pp. 4206-4209[3] Chong, Y.; Ge, L.; Cao, H.; Stone, A. D. Coherent perfect absorbers: time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010) no. 5, 053901[4] Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), 756[5] Engheta, N.; Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006[6] Romero-García, V.; Hladky-Hennion, A. Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, ISTE Willey, 2019[7] Craster, R.; Guenneau, S. Acoustic Metamaterials, Springer Series in Materials Science, vol. 166, Spinger, 2013[8] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., Volume 94 (2018), pp. 114-173[9] Mu, D.; Shu, H.; Zhao, L.; An, S. A review of research on seismic metamaterials, Adv. Eng. Mater., Volume 22 (2020) no. 4, 1901148[10] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y. Y.; Yang, Z.; Chan, C. T.; Sheng, P. Locally resonant sonic materials, Science, Volume 289 (2000) no. 5485, pp. 1734-1736[11] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus, Nat. Mater., Volume 5 (2006) no. 6, pp. 452-456[12] Acoustic Metamaterials and Phononic Crystals (Deymier, P., ed.), Springer-Verlag, Berlin, Heidelberg, 2013[13] Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons, Sci. Adv., Volume 2 (2016) no. 2, e1501595[14] Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials, Annu. Rev. Mater. Res., Volume 47 (2017), pp. 83-114[15] Bobrovnitskii, Y. I.; Tomilina, T. Sound absorption and metamaterials: A review, Acoust. Phys., Volume 64 (2018) no. 5, pp. 519-526[16] Lagarrigue, C.; Groby, J.-P.; Tournat, V.; Dazel, O.; Umnova, O. Absorption of sound by porous layers with embedded periodic array of resonant inclusions, J. Acoust. Soc. Am., Volume 134 (2013), pp. 4670-4680[17] Groby, J.-P.; Nennig, B.; Lagarrigue, C.; Brouard, B.; Dazel, O.; Tournat, V. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators, J. Acoust. Soc. Am., Volume 137 (2015) no. 1, pp. 273-280[18] Lagarrigue, C.; Groby, J.-P.; Dazel, O.; Tournat, V. Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band, Appl. Acoust., Volume 102 (2016), pp. 49-54[19] Cai, X.; Guo, Q.; Hu, G.; Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., Volume 105 (2014) no. 12, 121901[20] Li, Y.; Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett., Volume 108 (2016) no. 6, 063502[21] Wang, Y.; Zhao, H.; Yang, H.; Zhong, J.; Wen, J. A space-coiled acoustic metamaterial with tunable low-frequency sound absorption, Europhys. Lett., Volume 120 (2018) no. 5, 54001[22] Shen, C.; Cummer, S. A. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl., Volume 9 (2018) no. 5, 054009[23] Yang, Z.; Mei, J.; Yang, M.; Chan, N.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass, Phys. Rev. Lett., Volume 101 (2008) no. 20, 204301[24] Guo, X.; Gusev, V.; Bertoldi, K.; Tournat, V. Manipulating acoustic wave reflexion by a nonlinear elastic metasurface, J. Appl. Phys., Volume 123 (2018) no. 12, 124901[25] Guo, X.; Gusev, V.; Tournat, V.; Deng, B.; Bertoldi, K. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface, Phys. Rev. E, Volume 99 (2019), 052209[26] Bradley, C. E. Acoustic bloch wave propagation in a periodic waveguide Tech. rep., Technical Report of Applied Research Laboratories, Report No. ARL-TR-91-19 (July), The University of Texas at Austin (1991)[27] Sugimoto, N.; Horioka, T. Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators, J. Acoust. Soc. Am., Volume 97 (1995) no. 3, pp. 1446-1459[28] Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators, Sci. Rep., Volume 6 (2016), 19519[29] Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances, Nat. Mater., Volume 13 (2014) no. 9, pp. 873-878[30] Yang, M.; Meng, C.; Fu, C.; Li, Y.; Yang, Z.; Sheng, P. Subwavelength total acoustic absorption with degenerate resonators, Appl. Phys. Lett., Volume 107 (2015) no. 10, 104104[31] Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area, Appl. Phys. Lett., Volume 113 (2018), 201904[32] Groby, J.-P.; Huang, W.; Lardeau, A.; Aurégan, Y. The use of slow waves to design simple sound absorbing materials, J. Appl. Phys., Volume 117 (2015) no. 12, 124903[33] Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J. H. Superabsorption of acoustic waves with bubble metascreens, Phys. Rev. B, Volume 91 (2015), 020301[34] Fernández-Marín, A. A.; Jiménez, N.; Groby, J.-P.; Sánchez-Dehesa, J.; Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption, Appl. Phys. Lett., Volume 115 (2019), 061901[35] Long, H.; Cheng, Y.; Tao, J.; Liu, X. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system, Appl. Phys. Lett., Volume 110 (2017) no. 2, 023502[36] Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers, J. Acoust. Soc. Am., Volume 139 (2016) no. 6, pp. 3395-3403[37] Jiménez, N.; Huang, W.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption, Appl. Phys. Lett., Volume 109 (2016) no. 12, 121902[38] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound, Phys. Rev. B, Volume 95 (2017), 014205[39] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems, Sci. Rep., Volume 7 (2017) no. 1, 13595[40] Jiménez, N.; Cox, T. J.; Romero-García, V.; Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers, Sci. Rep., Volume 7 (2017) no. 1, 5389[41] Jiménez, N.; Romero-García, V.; Groby, J.-P. Perfect absorption of sound by rigidly-backed high-porous materials, Acta Acust. United Acust., Volume 104 (2018) no. 3, pp. 396-409[42] Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Appl. Phys. Lett., Volume 107 (2015) no. 24, 244102[43] Achilleos, V.; Richoux, O.; Theocharis, G. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator, J. Acoust. Soc. Am., Volume 140 (2016), EL94[44] Long, H.; Cheng, Y.; Liu, X. Asymmetric absorber with multiband and broadband for low-frequency sound, Appl. Phys. Lett., Volume 111 (2017) no. 14, 143502[45] Merkel, A.; Romero-García, V.; Groby, J.-P.; Li, J.; Christensen, J. Unidirectional zero sonic reflection in passive pt-symmetric willis media, Phys. Rev. B, Volume 98 (2018), 201102(R)[46] Monsalve, E.; Maurel, A.; Petitjeans, P.; Pagneux, V. Perfect absorption of water waves by linearor nonlinear critical coupling, Appl. Phys. Lett., Volume 114 (2018), 013901[47] Schwan, L.; Umnova, O.; Boutin, C. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation, Wave Motion, Volume 72 (2017), pp. 154-172[48] Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Appl. Phys. Lett., Volume 113 (2018) no. 23, 233501[49] Elayouch, A.; Addouche, M.; Khelif, A. Extensive tailorability of sound absorption using acoustic metamaterials, J. Appl. Phys., Volume 124 (2018) no. 15, 155103[50] Maurel, A.; Mercier, J.-F.; Pham, K.; Marigo, J.-J.; Ourir, A. Enhanced resonance of sparse arrays of Helmholtz resonators—application to perfect absorption, J. Acoust. Soc. Am., Volume 145 (2019) no. 4, pp. 2552-2560[51] Romero-García, V.; Jiménez, N.; Groby, J.-P.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Perfect absorption in mirror-symmetric acoustic metascreens, Phys. Rev. Appl. (2020), 054055[52] Bliokh, K. Y.; Bliokh, Y. P.; Freilikher, V.; Savel’ev, S.; Nori, F. Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys., Volume 80 (2008) no. 4, pp. 1201-1213[53] Richoux, O.; Achilleos, V.; Theocharis, G.; Brouzos, I. Subwavelength interferometric control of absorption in three-port acoustic network, Sci. Rep., Volume 8 (2018) no. 1, 12328[54] Piper, J. R.; Liu, V.; Fan, S. Total absorption by degenrate critical coupling, Appl. Phys. Lett., Volume 104 (2014), 251110[55] Chong, Y.; Ge, L.; Cao, H.; Stone, A. Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010), 053901[56] Wei, P.; Croënne, C.; Chu, S. T.; Li, J. Symmetrical and anti-symmetrical coherent prefect absorption for acoustic waves, Appl. Phys. Lett., Volume 104 (2014), 121902[57] Groby, J.-P.; Pommier, R.; Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials, J. Acoust. Soc. Am., Volume 139 (2016) no. 4, pp. 1660-1671[58] Luk, T.; Campione, S.; Kim, I.; Feng, S.; Jun, Y.; Liu, S.; Wright, J.; Brener, I.; Catrysse, P.; Fan, S.; Sinclair, M. Directional perfect absorption using deep subwavelength lowpermittivity films, Phys. Rev. B, Volume 90 (2014), 085411[59] Pagneux, V. Trapped modes and edge resonances in acoustics and elasticity, Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism (CISM International Centre for Mechanical Sciences, vol. 547), Springer, Vienna, 2013, pp. 181-223[60] Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape, J. Acoust. Soc. Am., Volume 89 (1991) no. 2, pp. 550-558[61] Theocharis, G.; Richoux, O.; Romero-Garcìa, V.; Merkel, A.; Tournat, V. Limits of slow sound and transparency in lossy locally resonant periodic structures, New J. Phys., Volume 16 (2014), 093017[62] Kergomard, J.; Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae, J. Sound Vib., Volume 114 (1987) no. 3, pp. 465-479[63] Dubos, V.; Kergomard, J.; Khettabi, A.; Dalmont, J.-P.; Keefe, D.; Nederveen, C. Theory of sound propagation in a duct with a branched tube using modal decomposition, Acta Acust. United Acust., Volume 85 (1999) no. 2, pp. 153-169[64] Mechel, F. P. Formulas of Acoustics, Springer Science & Business Media, Springer-Verlag, Heidelberg, 2008[65] Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligth, Cambridge University Press, UK, 1999[66] Zwikker, C.; Kosten, C. Sound Absorbing Materials, Elsevier Publishing Company, Amsterdam, 1949[67] Xu, Q.; Sandhu, S.; Povinelli, M. L.; Shakya, J.; Fan, S.; Lipson, M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency, Phys. Rev. Lett., Volume 96 (2006), 123901[68] Yang, X.; Yu, M.; Kwong, D.-L.; Wong, C. W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities, Phys. Rev. Lett., Volume 102 (2009), 173902[69] Boudouti, E. H. E.; Mrabti, T.; Al-Wahsh, H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L. Transmission gaps and Fano resonances in an acoustic waveguide: analytical model, J. Phys.: Condens. Matter, Volume 20 (2008), 255212[70] Santillan, A.; Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators, Phys. Rev. B, Volume 84 (2011), 064394[71] Mouadili, A.; Boudouti, E. H. E.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model, J. Phys.: Condens. Matter, Volume 26 (2014), 505901[72] Xu, Y.; Li, Y.; Lee, R. K.; Yariv, A. Scattering-theory analysis of waveguide–resonator coupling, Phys. Rev. E, Volume 62 (2000), pp. 7389-7404[73] Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, Springer, 1978, pp. 144-157[74] Cox, T. J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application, CRC Press, 2016[75] Groby, J.-P.; Ogam, E.; De Ryck, L.; Sebaa, N.; Lauriks, W. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, J. Acoust. Soc. Am., Volume 127 (2010) no. 2, pp. 764-772[76] Tsakmakidis, K. L.; Boardman, A. D.; Hess, O. Trapped rainbow storage of light in metamaterials, Nature, Volume 450 (2007) no. 7168, pp. 397-401[77] Zhu, J.; Chen, Y.; Zhu, X.; Garcia-Vidal, F. J.; Yin, X.; Zhang, W.; Zhang, X. Acoustic rainbow trapping, Sci. Rep., Volume 3 (2013), 1728[78] Romero-Garcia, V.; Picó, R.; Cebrecos, A.; Sanchez-Morcillo, V.; Staliunas, K. Enhancement of sound in chirped sonic crystals, Appl. Phys. Lett., Volume 102 (2013) no. 9, 091906[79] Ni, X.; Wu, Y.; Chen, Z.-G.; Zheng, L.-Y.; Xu, Y.-L.; Nayar, P.; Liu, X.-P.; Lu, M.-H.; Chen, Y.-F. Acoustic rainbow trapping by coiling up space, Sci. Rep., Volume 4 (2014), 7038[80] Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R. V. A seismic metamaterial: The resonant metawedge, Sci. Rep., Volume 6 (2016), 27717[81] Jan, A. U.; Porter, R. Transmission and absorption in a waveguide with a metamaterial cavity, J. Acoust. Soc. Am., Volume 144 (2018) no. 6, pp. 3172-318

    Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations

    Full text link
    Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex energy spectrum. When static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform magnetic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters from the modulations. We give a comprehensive report on these new symmetries. We have also found an electric-modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the investigations on frustrated antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.

    Physical and biological processes at the Subtropical Convergence in the South-west Indian Ocean

    Get PDF
    A detailed hydrographic and biological survey was conducted in the region of the Subtropical Convergence in the Indian sector of the Southern Ocean in April 2007. Hydrographic data revealed that the subsurface expression of the Subtropical Convergence (at 200 m), marked by the 10°C isotherm, appeared to meander considerably between 41°S and 42°15'S. Total surface chlorophyll-a concentration was low and ranged from 0.03 to 0.42 μg l-1 and was always dominated by the pico- ( 0.05). The Zooplankton community was dominated, numerically and by biomass, by mesozooplankton comprising mainly copepods of the genera, Oithona, Paraeuchaeta, Pleuromamma, Calanus and Clausocalanus. An exception was recorded at those stations in the region of the front where the tunicate, Salpa thompsoni, dominated the total Zooplankton biomass
    corecore