We are interested in the experimental characterization of the Hofstadter
butterfly by means of acoustical waves. The transmission of an acoustic pulse
through an array of 60 variable and resonant scatterers periodically distribued
along a waveguide is studied. An arbitrary scattering arrangement is realized
by using the variable length of each resonator cavity. For a periodic
modulation, the structures of forbidden bands of the transmission reproduce the
Hofstadter butterfly. We compare experimental, analytical, and computational
realizations of the Hofstadter butterfly and we show the influence of the
resonances of the scatterers on the structure of the butterfly