12,186 research outputs found

    Evaluating the mineral nutrient status of fresh pasture herbage using laser-induced breakdown spectroscopy

    Get PDF
    Comprehensive determination of the mineral nutrient status of pasture or horticultural crops currently requires leaf or herbage samples to be harvested and taken to a laboratory for analysis, which is both labour-intensive and time-consuming. This study examined the potential of laser-induced breakdown spectroscopy (LIBS) to provide immediate, in-field assessment of the mineral nutrient status of standing plants. Success would offer the prospects of spatially and temporally improved knowledge of plant status and of real-time remediation of nutrient deficiency. The mineral nutrient status of fresh pasture herbage has been evaluated using an Applied Photonics Ltd? LIBS-6 system, comprising a Qswitched Nd:YAG laser, a SpectroModule-6 spectrometer (covering wavelengths in the range ~185 – 1064 nm) and an ICE 450 water-cooled Laser power supply. LIBS spectra obtained from the fresh pasture samples were collected with the aim of determining the nutrient status of the herbage. An enclosed Modular Sample Chamber housed the Qswitched Nd:YAG laser, generating energy in the near infrared region at λ = 1064nm. The laser power was set to 100mW per pulse. Samples of approximately 50g of fresh ryegrass and ryegrass/clover mixed pasture were loaded into a sample holder which allowed a flat ‗carpet‘ of individual leaves to be presented at a relatively uniform distance from the laser. The optimum vertical distance between sample and laser was determined by maximising spectra amplitudes. Automated control of the translation stage supporting the sample holder was used to ensure each shot of the laser was acquired from a fresh location. Spectrum sets comprising both 100 individual spectra and 100 shot accumulated spectra were obtained from each sample under both air and under the inert gas, argon. Following the spectral analysis of the fresh pasture, each sample was sent to a commercial laboratory for standard nutrient analysis, providing elementary composition on the most common plant elements (N, P, K, S, Ca, Mg, Na, Fe, Mn, Zn, Cu and B). Once standard nutrient analysis was completed a second set of spectra was taken from tablets formed from compressed dried ground powder remaining after laboratory analysis. To date, initial results from simple chemometric analysis have shown limited success in predicting the nutrient content of fresh pasture with slightly improved results in estimating tablet composition. While initial analyses have concentrated on trends and correlations between actual spectra and laboratory analysis, known emission spectra, have for the meantime, been ignored. Further in-depth analysis using more robust chemometric analysis, utilizing known emission spectra and adjusting for variations in plasma intensity are currently underway and are expected to improve the accuracy of composition measurement

    Scientific results of the Bryotrop expedition to Zaire and Rwanda : 3., photosynthetic gas exchange of bryophytes from different forest types in eastern Central Africa.

    Get PDF
    During the BRYOTROP-Expedition to Zaire and Rwanda bryophytes were collected from a rainforest habitat at 800 m a.s.l. and from bamboo forest and tree-heath environments between 2200 and 3200 m. The microclimates influencing the mosses are different at the altitudinally separated locations. Conditions are rather constant with 24 °C, 100 % rel. hum. and PAR below 100 μmol photons m-2 sec-1 at the lowland station, rather versatile in the mountains with six times higher daily sums of PAR, temperatures between 10 and 25 °C and relative humidities between 60 and 1oo %. In the bamboo forest epiphytic mosses dry out during the day to less than 70 % of their water content, but regain saturation from the vapor-saturated air during night. Bryophyte photosynthesis and respiration were studied by Warburg manometry with moisture saturated samples. Temperature curves of gas exchange peaked between 22 and 30 °C. Optima of the lowland species were somewhat higher than those from samples collected at the mountain sites. Habitat separation of characteristics of photosynthesis was more pronounced with respect to light responses. Saturation gas exchange rates were reached by all species still below 400 μmol photons m-2 sec-1. But the slopes of the curves in the low-light range were distinctly steeper, and the light compensation points smaller in the lowland than in the highland species (compensation points of the former: 3 - 12 μmol photons m-2 sec-1, of the latter: 8 - 20 μmol photons m-2 sec-1). It is emphasized that bryophytes in the rainforest understory experience extremely high ambient C02 concentrations near the floor. This, their low light requirements for photosynthesis, and the permanently optimal temperature and humidity conditions for maximal carbon gain enable them to live successfully, but with less biomass development in this dark and damp environment. By contrast, bryophytes from the bamboo forest and tree-heath environments can utilize light conditions combined with variable temperatures and humidities similarly as species from extratropical vegetation types

    Measuring idiosyncratic risks in leveraged buyout transactions

    Get PDF
    We use a CCA model to calculate implied idiosyncratic risks of LBO transactions. A decisive model feature is the consideration of amortization. From the model, the asset value volatility and the equity value volatility can be derived via a numerical procedure. For a sample of 40 LBO transactions we determine the necessary model parameters and calculate the transactions' implied idiosyncratic risks. We discuss the expected model sensitivities and verify them by variation of the input parameters. With the knowledge of the returns to the equity investors of the LBOs we are able to calculate Sharpe Ratios on individual transaction levels for the first time, thereby fully incorporating the superimposed leverage risks.Idiosyncratic Risk; Private Equity; Benchmarking;

    Spectral density of the Dirac operator in two-flavour QCD

    Full text link
    We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation

    Metabolomic systems biology of trypanosomes

    Get PDF
    Metabolomics analysis, which aims at the systematic identification and quantification of all metabolites in biological systems, is emerging as a powerful new tool to identify biomarkers of disease, report on cellular responses to environmental perturbation, and to identify the targets of drugs. Here we discuss recent developments in metabolomic analysis, from the perspective of trypanosome research, highlighting remaining challenges and the most promising areas for future research

    Mode-selective vibrational excitation induced by nonequilibrium transport processes in single-molecule junctions

    Full text link
    In a nanoscale molecular junction at finite bias voltage,the intra-molecular distribution of vibrational energy can strongly deviate from the thermal equilibrium distribution and specific vibrational modes can be selectively excited in a controllable way,regardless of the corresponding mode frequency. This is demonstrated for generic models of asymmetric molecular junctions with localized electronic states, employing a master equation as well as a nonequilibrium Green's function approach. It is shown that the applied bias voltage controls the excitation of specific vibrational modes coupled to these states, by tuning their electronic population,which influences the efficiency of vibrational cooling processes due to energy exchange with the leads.Comment: 12 pages, 4 figures, and Support Informatio

    Non-axisymmetric Magnetorotational Instabilities in Cylindrical Taylor-Couette Flow

    Full text link
    We study the stability of cylindrical Taylor-Couette flow in the presence of azimuthal magnetic fields, and show that one obtains non-axisymmetric magnetorotational instabilities, having azimuthal wavenumber m=1. For Omega_o/Omega_i only slightly greater than the Rayleigh value (r_i/r_o)^2, the critical Reynolds and Hartmann numbers are Re_c ~ 10^3 and Ha_c ~ 10^2, independent of the magnetic Prandtl number Pm. These values are sufficiently small that it should be possible to obtain these instabilities in the PROMISE experimental facility.Comment: final version as accepted by Phys Rev Let
    corecore