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Background
Precision agriculture is continually creating financial1 and 
environmental benefits2 through site-specific management 
of crops. However, there is currently no technology available 
for real-time, in-situ analysis of the mineral nutritional status 
of plants. Few measurement technologies have the required                
characteristics, such as (i) portability, (ii) high speed, (iii) 
specificity, (iv) sensitivity, (v) non-contact assessment, (vi) sample                                     
preparation, and (vii) simplicity3. Laser-induced breakdown 
spectroscopy (LIBS) has the potential to do so. If successful, 
LIBS-based technology could provide real-time information on 
the mineral nutrient status of plant material4 and become an 
effective tool for precision agriculture. 
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Figure 1:  Sample holder containing 
samples of fresh ryegrass presented 
to the laser at a uniform height.
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Methodology
•	 An Applied Photonics laboratory based LIBS-6™ system,  

housing a Q-switched Nd:YAG laser, operating at λ = 1064 
nm with pulse energy of 150 mJ (@ 6 ns) was used to obtain 
spectra of fresh ryegrass and ryegrass/clover mixed pasture 
over a 10-month period. 

•	 50-g samples were loaded into a holder which allowed a flat 
‘carpet’ of individual leaves to be presented at a relatively  
uniform distance from the laser (Figure 1). Spectrum sets 
comprising of 100-shot accumulated spectra were obtained 
from each sample at a rate of 5 Hz.

•	 Following acquisition of LIBS spectra from the fresh pasture, 
samples were sent to a commercial laboratory for standard 
nutrient analysis, providing the elementary composition 
percentage by weight of dry matter of the most common 
elements (N, P, K, Na, S, Ca, Mg, Fe, Mn, Zn, Cu and B). Once 
standard nutrient analysis was completed, a second set of 
spectra was taken from pellets formed from compressed dried 
ground powder remaining after laboratory analysis (Figure 2). 

•	 Calibration models predicting elemental nutrient             
concentrations from LIBS spectra were developed using ‘black 
box’ chemometric analysis.  Spectra were pre-processed by 
using median filtering for baseline removal and mean centring 
in preparation for partial least squares (PLS) analysis.  Between 
four and 14 latent variables were used with 10-way venetian 
blind cross-validation to form optimal calibration models.

Results
Results from the chemometric analysis have shown LIBS to be successful in identifying the mineral nutrient status of a number 
of plant elements. The more common elements, N, K, P and Na, are plotted for both fresh pasture (Figure 3) and pelletized 
pasture samples (Figure 4), with results showing the correlations between actual and predicted element concentrations.      
The pelletized samples led to more robust models, perhaps because of reduced energy loss in the water matrix. 

Conclusion
We have shown that LIBS can identify a number of elements 
in fresh pasture using a simple chemometric approach. We 
believe LIBS has the ability to be an effective tool for precision 
agriculture, providing in-field, real time, mineral nutrient 
analysis on fresh pasture. 

Further investigations into the calibration analysis are 
warranted. We hope further elements can be identified 
and results improved by performing rigorous emission 
spectroscopy analysis. Accuracy could be further improved by 
creating a tighter laser focus by using an auto focus   mechanism 
or creating a better defined fixed object/laser distance.

Element LV R2
c RMSEC R2

cv RMSECV
Nitrogen 4 0.47 0.39 0.49 0.42

Phosphorus 5 0.41 0.04 0.29 0.06

Potassium 6 0.79 0.31 0.78 0.44

Sodium 8 0.72 0.04 0.48 0.08

Figure 2:  Sample holder containing 
samples of ground ryegrass in a pellet 
format exposed to the laser.

Figure 3:  N, K, P and Na calibrations statistics for predicting elemental concentrations from 
LIBS spectra of fresh pasture using PLS modelling with 10-way venetian blind validation, 
giving the number of latent variables used (LV), the correlation coefficients for calibration (R2

c) 
and validation (R2

cv) and the root mean square errors of calibration (RMSEC) and validation 
(RMSECV).

Element LV R2
c RMSEC R2

cv RMSECV
Nitrogen 4 0.73 0.27 0.65 0.30

Phosphorus 5 0.45 0.04 0.31 0.04

Potassium 6 0.95 0.17 0.94 0.20

Sodium 8 0.95 0.02 0.91 0.02

Figure 4:  N, K, P and Na calibrations statistics for predicting elemental concentrations from 
LIBS spectra of pelletized pasture using PLS modelling with 10-way venetian blind validation, 
giving the number of latent variables used (LV), the correlation coefficients for calibration (R2

c) 
and validation (R2

cv) and the root mean square errors of calibration (RMSEC) and validation 
(RMSECV).
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