3,781 research outputs found

    Bringing self assessment home: repository profiling and key lines of enquiry within DRAMBORA

    Get PDF
    Digital repositories are a manifestation of complex organizational, financial, legal, technological, procedural, and political interrelationships. Accompanying each of these are innate uncertainties, exacerbated by the relative immaturity of understanding prevalent within the digital preservation domain. Recent efforts have sought to identify core characteristics that must be demonstrable by successful digital repositories, expressed in the form of check-list documents, intended to support the processes of repository accreditation and certification. In isolation though, the available guidelines lack practical applicability; confusion over evidential requirements and difficulties associated with the diversity that exists among repositories (in terms of mandate, available resources, supported content and legal context) are particularly problematic. A gap exists between the available criteria and the ways and extent to which conformity can be demonstrated. The Digital Repository Audit Method Based on Risk Assessment (DRAMBORA) is a methodology for undertaking repository self assessment, developed jointly by the Digital Curation Centre (DCC) and DigitalPreservationEurope (DPE). DRAMBORA requires repositories to expose their organization, policies and infrastructures to rigorous scrutiny through a series of highly structured exercises, enabling them to build a comprehensive registry of their most pertinent risks, arranged into a structure that facilitates effective management. It draws on experiences accumulated throughout 18 evaluative pilot assessments undertaken in an internationally diverse selection of repositories, digital libraries and data centres (including institutions and services such as the UK National Digital Archive of Datasets, the National Archives of Scotland, Gallica at the National Library of France and the CERN Document Server). Other organizations, such as the British Library, have been using sections of DRAMBORA within their own risk assessment procedures. Despite the attractive benefits of a bottom up approach, there are implicit challenges posed by neglecting a more objective perspective. Following a sustained period of pilot audits undertaken by DPE, DCC and the DELOS Digital Preservation Cluster aimed at evaluating DRAMBORA, it was stated that had respective project members not been present to facilitate each assessment, and contribute their objective, external perspectives, the results may have been less useful. Consequently, DRAMBORA has developed in a number of ways, to enable knowledge transfer from the responses of comparable repositories, and incorporate more opportunities for structured question sets, or key lines of enquiry, that provoke more comprehensive awareness of the applicability of particular threats and opportunities

    Variable mixer propulsion cycle

    Get PDF
    A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings

    Large-area sheet task advanced dendritic web growth development

    Get PDF
    The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded

    Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    Get PDF
    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities

    Large-area sheet task: Advanced dendritic-web-growth development

    Get PDF
    Thermally generated stresses in the growing web crystal were reduced. These stresses, which if too high cause the ribbon to degenerate, were reduced by a factor of three, resulting in the demonstrated growth of high-quality web crystals to widths of 5.4 cm. This progress was brought about chiefly by the application of thermal models to the development of low-stress growth configurations. A new temperature model was developed which can analyze the thermal effects of much more complex lid and top shield configurations than was possible with the old lumped shield model. Growth experiments which supplied input data such as actual shield temperature and melt levels were used to verify the modeling results. Desirable modifications in the melt level-sensing circuitry were made in the new experimental web growth furnace, and this furnace has been used to carry out growth experiments under steady-state conditions. New growth configurations were tested in long growth runs at Westinghouse AESD which produced wider, lower stress and higher quality web crystals than designs previously used

    Silicon web process development

    Get PDF
    Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities

    Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    Get PDF
    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals

    Multipurpose electric furnace system

    Get PDF
    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown
    • …
    corecore