231 research outputs found

    Architecture of the Andromeda galaxy : a quantitative analysis of clustering in the inner stellar halo

    Get PDF
    We present a quantitative measurement of the amount of clustering present in the inner ∼30 kpc of the stellar halo of the Andromeda galaxy (M31). For this we analyse the angular positions and radial velocities of the carefully selected planetary nebulae in the M31 stellar halo. We study the cumulative distribution of pairwise distances in angular position and line-of-sight velocity space, and find that the M31 stellar halo contains substantially more stars in the form of close pairs as compared to that of a featureless smooth halo. In comparison to a smoothed/scrambled distribution, we estimate that the clustering excess in the M31 inner halo is roughly 40 per cent at maximum and on average ∼20 per cent. Importantly, comparing against the 11 stellar halo models of Bullock & Johnston, which were simulated within the context of the ΛCDM (Λ cold dark matter) cosmological paradigm, we find that the amount of substructures in the M31 stellar halo closely resembles that of a typical ΛCDM halo.Publisher PDFPeer reviewe

    Jeans that fit : weighing the mass of the Milky Way analogues in the ΛCDM universe

    Get PDF
    The spherical Jeans equation is a widely used tool for dynamical study of gravitating systems in astronomy. Here, we test its efficacy in robustly weighing the mass of Milky Way analogues, given they need not be in equilibrium or even spherical. Utilizing Milky Way stellar haloes simulated in accordance with Λ cold dark matter (ΛCDM) cosmology by Bullock and Johnston and analysing them under the Jeans formalism, we recover the underlying mass distribution of the parent galaxy, within distance r/kpc ∈ [10, 100], with a bias of ∼ 12 per cent and a dispersion of ∼ 14 per cent. Additionally, the mass profiles of triaxial dark matter haloes taken from the surfs simulation, within scaled radius 0.2 < r/rmax < 3, are measured with a bias of ∼ − 2.4 per cent and a dispersion of ∼ 10 per cent. The obtained dispersion is not because of Poisson noise due to small particle numbers as it is twice the later. We interpret the dispersion to be due to the inherent nature of the ΛCDM haloes, for example being aspherical and out-of-equilibrium. Hence, the dispersion obtained for stellar haloes sets a limit of about 12 per cent (after adjusting for random uncertainty) on the accuracy with which the mass profiles of the Milky Way-like galaxies can be reconstructed using the spherical Jeans equation. This limit is independent of the quantity and quality of the observational data. The reason for a non-zero bias is not clear, hence its interpretation is not obvious at this stage.Publisher PDFPeer reviewe

    The need for speed : escape velocity and dynamical mass measurements of the Andromeda galaxy

    Get PDF
    Our nearest large cosmological neighbour, the Andromeda galaxy (M31), is a dynamical system, and an accurate measurement of its total mass is central to our understanding of its assembly history, the life-cycles of its satellite galaxies, and its role in shaping the Local Group environment. Here, we apply a novel approach to determine the dynamical mass of M31 using high velocity Planetary Nebulae (PNe), establishing a hierarchical Bayesian model united with a scheme to capture potential outliers and marginalize over tracers unknown distances. With this, we derive the escape velocity run of M31 as a function of galacto-centric distance, with both parametric and non-parametric approaches. We determine the escape velocity of M31 to be 470 ± 40  km s−1 at a galacto-centric distance of 15  kpc, and also, derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8±0.1×1012M⊙ and 240 ± 10  kpc, respectively. Our M31 mass is on the low-side of the measured range, this supports the lower expected mass of the M31-Milky Way system from the timing and momentum arguments, satisfying the H i constraint on circular velocity between 10 ≲ R/ kpc < 35, and agreeing with the stellar mass Tully-Fisher relation. To place these results in a broader context, we compare them to the key predictions of the ΛCDM cosmological paradigm, including the stellar-mass–halo-mass and the dark matter halo concentration–virial mass correlation, and finding it to be an outlier to this relation.PostprintPeer reviewe

    G10/COSMOS : 38 band (far-UV to far-IR) panchromatic photometry using LAMBDAR

    Get PDF
    We present a consistent total flux catalogue for a ∼1 deg2 subset of the Cosmic Evolution Survey (COSMOS) region (RA ∈ [149∘.55, 150∘.65], Dec. ∈ [1∘.80, 2∘.73]) with near-complete coverage in 38 bands from the far-ultraviolet to the far-infrared. We produce aperture matched photometry for 128 304 objects with i < 24.5 in a manner that is equivalent to the Wright et al. catalogue from the low-redshift (z < 0.4) Galaxy and Mass Assembly (GAMA) survey. This catalogue is based on publicly available imaging from GALEX, Canada–France–Hawaii Telescope, Subaru, Visible and Infrared Survey Telescope for Astronomy, Spitzer and Herschel, contains a robust total flux measurement or upper limit for every object in every waveband and complements our re-reduction of publicly available spectra in the same region. We perform a number of consistency checks, demonstrating that our catalogue is comparable to existing data sets, including the recent COSMOS2015 catalogue. We also release an updated Davies et al. spectroscopic catalogue that folds in new spectroscopic and photometric redshift data sets. The catalogues are available for download at http://cutout.icrar.org/G10/dataRelease.php. Our analysis is optimised for both panchromatic analysis over the full wavelength range and for direct comparison to GAMA, thus permitting measurements of galaxy evolution for 0 < z < 1 while minimizing the systematic error resulting from disparate data reduction methods.Publisher PDFPeer reviewe

    Galactic googly : the rotation-metallicity bias in the inner stellar halo of the Milky Way

    Get PDF
    The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained ‘known unknowns’. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > −1.4) and the metal-poor ([Fe/H] ≤ −1.4) MSTO samples show a clear systematic difference in vrot ∼ 20-40 km s−1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased i.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, i.e. in situ versus accretion.Publisher PDFPeer reviewe

    Parasitic pneumonia in roe deer (Capreolus capreolus) in Cornwall, Great Britain, caused by Varestrongylus capreoli (Protostrongylidae)

    Get PDF
    Abstract Background Roe deer (Capreolus capreolus) became extinct over large areas of Britain during the post mediaeval period but following re-introductions from Europe during the 1800s and early 1900s the population started to recover and in recent decades there has been a spectacular increase. Many roe deer are shot in Britain each year but despite this there is little published information on the diseases and causes of mortality of roe deer in Great Britain. Case presentation The lungs of two hunter-shot roe deer in Cornwall showed multiple, raised, nodular lesions associated with numerous protostrongylid-type nematode eggs and first stage larvae. There was a pronounced inflammatory cell response (mostly macrophages, eosinophils and multinucleate giant cells) and smooth muscle hypertrophy of the smaller bronchioles. The morphology of the larvae was consistent with that of a Varestrongylus species and sequencing of an internal transcribed spacer-2 fragment confirmed 100% identity with a published Norwegian Varestrongylus cf. capreoli sequence. To the best of the authors’ knowledge this is the first confirmed record of V. capreoli in Great Britain. Co-infection with an adult protostrongylid, identified by DNA sequencing as Varestrongylus sagittatus, was also demonstrated in one case. Conclusions Parasitic pneumonia is regarded as a common cause of mortality in roe deer and is typically attributed to infection with Dictyocaulus sp. This study has shown that Varestrongylus capreoli also has the capability to cause significant lung pathology in roe deer and heavy infection could be of clinical significance

    Galactic cartography with SkyMapper - I. Population substructure and the stellar number density of the inner halo

    Get PDF
    The stars within our Galactic halo presents a snapshot of its ongoing growth and evolution, probing galaxy formation directly. Here, we present our first analysis of the stellar halo from detailed maps of Blue Horizontal Branch (BHB) stars drawn from the SkyMapper Southern Sky Survey. To isolate candidate BHB stars from the overall population, we develop a machine-learning approach through the application of an Artificial Neural Network (ANN), resulting in a relatively pure sample of target stars. From this, we derive the absolute u magnitude for the BHB sample to be similar to 2 mag, varying slightly with (v - g)(0) and (u - v)(0) colours. We examine the BHB number density distribution from 5272 candidate stars, deriving a double power law with a break radius of r(s) = 11.8 +/- 0.3 kpc, and inner and outer slopes of alpha(in) = -2.5 +/- 0.1 and alpha(out) = -4.5 +/- 0.3, respectively. Through isochrone fitting of simulated BHB stars, we find a colour-age/metallicity correlation, with older/more metal-poor stars being bluer, and establish a parameter to indicate this age (or metallicity) variation. Using this, we construct the three-dimensional population distribution of BHB stars in the halo and identify significant substructure. Finally, in agreement with previous studies, we also identify a systemic age/metallicity shift spanning similar to 3 kpc to similar to 20 kpc in Galactocentric distance.ZW gratefully acknowledges financial support through the Dean’s International Postgraduate Research Scholarship from the Physics School of the University of Sydney. PRK is funded through Australian Research Council (ARC) grant DP140100395. ADM is grateful for support from an ARC Future Fellowship (FT160100206). SS is funded by University of Sydney Senior Fellowship made possible by the office of the Deputy Vice Chancellor of Research, and partial funding from Bland-Hawthorn’s Laureate Fellowship from the Australian Research Council. GFL thanks the University of Surrey for hosting him as an IAS fellow for the final stages of the preparation of this paper. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University, and the Australian Astronomical Observatory

    Halo orbits in cosmological disk galaxies : tracers of information history

    Get PDF
    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner ∼20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes—the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity �0.6. We find that randomly selected samples of halo stars show no substructure in “integrals of motion” space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible

    Galaxy And Mass Assembly (GAMA) : the absence of stellar mass segregation in galaxy groups and consistent predictions from GALFORM and EAGLE simulations

    Get PDF
    We investigate the contentious issue of the presence, or lack thereof, of satellites mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the galform semi-analytic, and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We select groups with halo mass 12 ≤ log (Mhalo/h−1 M⊙) < 14.5 and redshift z ≤ 0.32 and probe the radial distribution of stellar mass out to twice the group virial radius. All the samples are carefully constructed to be complete in stellar mass at each redshift range and efforts are made to regularize the analysis for all the data. Our study shows negligible mass segregation in galaxy group environments with absolute gradients of ≲0.08 dex and also shows a lack of any redshift evolution. Moreover, we find that our results at least for the GAMA data are robust to different halo mass and group centre estimates. Furthermore, the EAGLE data allows us to probe much fainter luminosities (r-band magnitude of 22) as well as investigate the three-dimensional spatial distribution with intrinsic halo properties, beyond what the current observational data can offer. In both cases we find that the fainter EAGLE data show a very mild spatial mass segregation at z ≤ 0.22, which is again not apparent at higher redshift. Interestingly, our results are in contrast to some earlier findings using the Sloan Digital Sky Survey. We investigate the source of the disagreement and suggest that subtle differences between the group-finding algorithms could be the root cause.Publisher PDFPeer reviewe
    corecore