8,161 research outputs found

    A functional non-central limit theorem for jump-diffusions with periodic coefficients driven by stable Levy-noise

    Full text link
    We prove a functional non-central limit theorem for jump-diffusions with periodic coefficients driven by strictly stable Levy-processes with stability index bigger than one. The limit process turns out to be a strictly stable Levy process with an averaged jump-measure. Unlike in the situation where the diffusion is driven by Brownian motion, there is no drift related enhancement of diffusivity.Comment: Accepted to Journal of Theoretical Probabilit

    Derivative moments in turbulent shear flows

    Full text link
    We propose a generalized perspective on the behavior of high-order derivative moments in turbulent shear flows by taking account of the roles of small-scale intermittency and mean shear, in addition to the Reynolds number. Two asymptotic regimes are discussed with respect to shear effects. By these means, some existing disagreements on the Reynolds number dependence of derivative moments can be explained. That odd-order moments of transverse velocity derivatives tend not vanish as expected from elementary scaling considerations does not necessarily imply that small-scale anisotropy persists at all Reynolds numbers.Comment: 11 pages, 7 Postscript figure

    An energy-momentum consistent time integration scheme based on a mixed framework for non-linear electro-elastodynamics

    Get PDF
    The objective of the present work is the introduction of new mixed variational principles for EM time integrators in electromechanics, hence bridging the gap between the previous work presented by the authors in References [11] and [1], opening up the possibility to a variety of new Finite Element implementations

    Evidence for magnetic clusters in Ni1−x_{1-x}Vx_{x} close to the quantum critical concentration

    Get PDF
    The d-metal alloy Ni1−x_{1-x}Vx_{x} undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration xx is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration xc≈11.6x_c \approx11.6% at which the onset of ferromagnetic order is suppressed to zero temperature. Below xcx_c, the muon data reveal a broad magnetic field distribution indicative of long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase boundary in this disordered itinerant system as an important generic ingredient of a disordered quantum phase transition. In contrast, the temperature dependence of the magnetic susceptibility above xcx_c is best described in terms of a magnetic quantum Griffiths phase with a power-law distribution of fluctuation rates of dynamic magnetic clusters. At the lowest temperatures, the onset of a short-range ordered cluster-glass phase is recognized by an increase in the muon depolarization in transverse fields and maxima in ac-susceptibility.Comment: 6 pages, 5 figures, submitted to Proceedings of SCES 201

    Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)

    Get PDF
    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers

    Climatology and Modeling of Quasi-monochromatic Atmospheric Gravity Waves Observed over Urbana Illinois

    Get PDF
    From analyzing nine months of airglow imaging observations of atmospheric gravity waves (AGWs) over Adelaide, Australia (35°S) [Walterscheid et al., 1999] have proposed that many of the quasi-monochromatic waves seen in the images were primarily thermally ducted. Here are presented 15 months of observations, from February 1996 to May 1997, for AGW frequency and propagation direction from a northern latitude site, Urbana Illinois (40°N). As Adelaide, Urbana is geographically distant from large orographic features. Similar to what was found in Adelaide, the AGWs seem to originate from a preferred location during the time period around summer solstice. In conjunction with these airglow data there exists MF radar data to provide winds in the 90 km region and near-simultaneous lidar data which provide a temperature climatology. The temperature data have previously been analyzed by States and Gardner [2000]. The temperature and wind data are used here in a full wave model analysis to determine the characteristics of the wave ducting and wave reflection during the 15 month observation period. This model analysis is applied to this and another existing data set recently described by Nakamura et al. [1999]. It is shown that the existence of a thermal duct around summer solstice can plausibly account for our observations. However, the characteristics of the thermal duct and the ability of waves to be ducted is also greatly dependent on the characteristics of the background wind. A simple model is constructed to simulate the trapping of these waves by such a duct. It is suggested that the waves seen over Urbana originate no more than a few thousand kilometers from the observation site
    • …
    corecore