4,869 research outputs found

    Curvature Constraints from the Causal Entropic Principle

    Full text link
    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The Causal Entropic Principle (Bousso, {\it et al}.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the Causal Entropic Principle to predict the preferred curvature within the "multiverse". We have found that values larger than ρk=40ρm\rho_k = 40\rho_m are disfavored by more than 99.99% and a peak value at ρΛ=7.9×10123\rho_{\Lambda} = 7.9 \times 10^{-123} and ρk=4.3ρm\rho_k =4.3 \rho_m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.Comment: 5 pages, 3 Figure

    How a National Carbon Policy Could Affect Grain Variety Selection: The Case of Rice in Arkansas

    Get PDF
    This study conducts a life cycle assessment (LCA) of carbon emissions and estimates the carbon sequestered in 14 commonly sown rice varieties across the Arkansas Delta. Given the uncertainty regarding future carbon legislation, and increased consumer and industry demand for “greener” products, this study estimates how potential carbon policies would affect rice cultivar selection Hybrid rice varieties, given their higher yield and higher yield per unit of green house gas (GHG) emission, are better positioned to take advantage of any increase in consumer demand for “greener” products and/or absorb any government policy better than conventional rice cultivars.Rice, Carbon Policy, Cap and Trade, Carbon Offset, Agricultural and Food Policy, Crop Production/Industries, Environmental Economics and Policy, Q52, Q54, Q58,

    Segregation of cortical head direction cell assemblies on alternating theta cycles

    Get PDF
    High-level cortical systems for spatial navigation, including entorhinal grid cells, critically depend on input from the head direction system. We examined spiking rhythms and modes of synchrony between neurons participating in head direction networks for evidence of internal processing, independent of direct sensory drive, which may be important for grid cell function. We found that head direction networks of rats were segregated into at least two populations of neurons firing on alternate theta cycles (theta cycle skipping) with fixed synchronous or anti-synchronous relationships. Pairs of anti-synchronous theta cycle skipping neurons exhibited larger differences in head direction tuning, with a minimum difference of 40 degrees of head direction. Septal inactivation preserved the head direction signal, but eliminated theta cycle skipping of head direction cells and grid cell spatial periodicity. We propose that internal mechanisms underlying cycle skipping in head direction networks may be critical for downstream spatial computation by grid cells.We kindly thank S. Gillet, J. Hinman, E. Newman and L. Ewell for their invaluable consultations and comments on previous versions of this manuscript, as well as M. Connerney, S. Eriksson, C. Libby and T. Ware for technical assistance and behavioral training. This work was supported by grants from the National Institute of Mental Health (R01 MH60013 and MH61492) and the Office of Naval Research Multidisciplinary University Research Initiative (N00014-10-1-0936). (R01 MH60013 - National Institute of Mental Health; MH61492 - National Institute of Mental Health; N00014-10-1-0936 - Office of Naval Research Multidisciplinary University Research Initiative)Accepted manuscrip

    Exact results for a charged, harmonically trapped quantum gas at arbitrary temperature and magnetic field strength

    Full text link
    An analytical expression for the first-order density matrix of a charged, two-dimensional, harmonically confined quantum gas, in the presence of a constant magnetic field is derived. In contrast to previous results available in the literature, our expressions are exact for any temperature and magnetic field strength. We also present a novel factorization of the Bloch density matrix in the form of a simple product with a clean separation of the zero-field and field-dependent parts. This factorization provides an alternative way of analytically investigating the effects of the magnetic field on the system, and also permits the extension of our analysis to other dimensions, and/or anisotropic confinement.Comment: To appear in Phys. Rev.

    Linearized self-forces for branes

    Full text link
    We compute the regularized force density and renormalized action due to fields of external origin coupled to a brane of arbitrary dimension in a spacetime of any dimension. Specifically, we consider forces generated by gravitational, dilatonic and generalized antisymmetric form-fields. The force density is regularized using a recently developed gradient operator. For the case of a Nambu--Goto brane, we show that the regularization leads to a renormalization of the tension, which is seen to be the same in both approaches. We discuss the specific couplings which lead to cancellation of the self-force in this case.Comment: 15 page

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively

    Prenatal and Postnatal Sonographic Confirmation of Congenital Absence of the Ductus Venosus in a Child with Noonan Syndrome

    Get PDF
    The ductus venosus serves as an important vascular pathway for intrauterine circulation. This case presents a description of an absent ductus venosus in a female patient with Noonan syndrome, including both prenatal and postnatal imaging of the anomaly. In the setting of the anomalous vascular connection, the umbilical vein courses inferiorly to the iliac vein in parallel configuration with the umbilical artery. This finding was suspected based on prenatal imaging and the case was brought to attention when placement of an umbilical catheter was thought to be malpositioned given its appearance on radiography. Ultrasound imaging confirmed the anomalous course. This is in keeping with prior descriptions in the literature of an association between Noonan syndrome and aberrant umbilical venous drainage. This case illustrates the need for awareness of this condition by the radiologist, allowing for identification on radiographs and the recommendation for further confirmatory imaging. Further, the case illustrates the value of paying particular attention to the fetal course of the umbilical vessels in patients with suspected Noonan syndrome, as this population is particularly at risk for anomalous vasculature

    Discovery of the Interstellar Chiral Molecule Propylene Oxide (CH3_3CHCH2_2O)

    Get PDF
    Life on Earth relies on chiral molecules, that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere. We present the astronomical detection of a chiral molecule, propylene oxide (CH3_3CHCH2_2O), in absorption toward the Galactic Center. Propylene oxide is detected in the gas phase in a cold, extended molecular shell around the embedded, massive protostellar clusters in the Sagittarius B2 star-forming region. This material is representative of the earliest stage of solar system evolution in which a chiral molecule has been found
    corecore