11,687 research outputs found

    Polarization of the electron and positron produced in combined Coulomb and strong laser fields

    Full text link
    The process of e+e−e^+e^- production in the superposition of a Coulomb and a strong laser field is considered. The pair production rate integrated over the momentum and summed over the spin projections of one of the particles is derived exactly in the parameters of the laser field and in the Born approximation with respect to the Coulomb field. The case of a monochromatic circularly polarized laser field is considered in detail. A very compact analytical expression of the pair production rate and its dependence on the polarization of one of the created particles is obtained in the quasiclassical approximation for the experimentally relevant case of an undercritical laser field. As a result, the polarization of the created electron (positron) is derived.Comment: 16 pages, no figure

    Population synthesis of DA white dwarfs: constraints on soft X-ray spectra evolution

    Full text link
    Extending the population synthesis method to isolated young cooling white dwarfs we are able to confront our model assumptions with observations made in ROSAT All-Sky Survey (Fleming et al., 1996). This allows us to check model parameters such as evolution of spectra and separation of heavy elements in DA WD envelopes. It seems like X-ray spectrum temperature of these objects is given by the formula T_{X-ray} = min(T_eff, T_max). We have obtained DA WD's birth rate and upper limit of the X-ray spectrum temperature: DA birth rate =0.61×10−12= 0.61\times 10^{-12} in cubic parsec per year and T_max = 41000 K. These values are in good correspondence with values obtained by other authors (Liebert et al., 2004; Wolff et al., 1996). From this fact we also conclude that our population synthesis method is applicable to the population of close-by isolated cooling white dwarfs as well as to the population of the isolated cooling neutron stars.Comment: 4 pages, 3 figures, conference "European White Dwarf Workshop, 2010", Tubingen, German

    Statistical properties of Klauder-Perelomov coherent states for the Morse potential

    Full text link
    We present in this paper a realistic construction of the coherent states for the Morse potential using the Klauder-Perelomov approach . We discuss the statistical properties of these states, by deducing the Q- and P-distribution functions. The thermal expectations for the quantum canonical ideal gas of the Morse oscillators are also calculated

    Angular distributions of scattered excited muonic hydrogen atoms

    Full text link
    Differential cross sections of the Coulomb deexcitation in the collisions of excited muonic hydrogen with the hydrogen atom have been studied for the first time. In the framework of the fully quantum-mechanical close-coupling approach both the differential cross sections for the nl→n′l′nl \to n'l' transitions and ll-averaged differential cross sections have been calculated for exotic atom in the initial states with the principle quantum number n=2−6n=2 - 6 at relative motion energies Ecm=0.01−15E_{\rm {cm}}=0.01 - 15 eV and at scattering angles θcm=0−180∘\theta_{\rm {cm}}=0 - 180^{\circ}. The vacuum polarization shifts of the nsns-states are taken into account. The calculated in the same approach differential cross sections of the elastic and Stark scattering are also presented. The main features of the calculated differential cross sections are discussed and a strong anisotropy of cross sections for the Coulomb deexcitation is predicted.Comment: 5 pages, 9 figure
    • …
    corecore