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Abstract 
 

Assessment of software COTS components is an 

essential part of component-based software 

development. Sub-optimal selection of components 

may lead to solutions with low quality. The assessment 

is based on incomplete knowledge about the COTS 

components themselves and other aspects, which may 

affect the choice such as the vendor’s credentials, etc. 

We argue in favor of assessment methods in which 

uncertainty is explicitly represented (‘uncertainty 

explicit’ methods) using probability distributions. We 

have adapted a model (developed elsewhere [17]) for 

assessment of a pair of COTS components to take 

account of the fault (bug) logs that might be available 

for the COTS components being assessed. We also 

provide empirical data from a study we have 

conducted with off-the-shelf database servers, which 

illustrate the use of the method.  

 

1. Introduction 
 

Commercial-off-the-shelf (COTS) components often 

form an essential part in software development. 

Benefits of their use are wide ranging: from the 

incentive to cut-down on cost to reducing the 

development time and improving quality by using tried 

and tested components. An initial and essential part of 

component based software development is the 

assessment of available COTS components. There exist 

a plethora of available methods for COTS assessment 

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], 

[13], [14]. An often overlooked aspect in the existing 

assessment techniques is the inherent uncertainty in the 

values of the parameters being assessed. This is 

because the assessment is carried out with limited 

resources of time and budget. Therefore the true values 

of the assessed attributes will rarely be known with 

certainty. 

For solutions with very stringent dependability 

requirements a single component may rarely be able to 

meet the required dependability target. It has been 

argued [15] that employing fault-tolerance in the form 

of software design diversity (i.e. using more than one 

component to perform the same function) is usually the 

best guarantee of achieving higher levels of 

dependability than what the available COTS 

components can offer. But, employing software 

diversity was seen in the past as an expensive method 

for increasing dependability due to the need of building 

more than one component. With off-the-shelf 

components this problem is overcome: there may be 

many different components that will have the required 

functionality therefore bespoke development may not 

be required
1
. Moreover many of these components are 

free and open-source, thus the cost of procurement may 

be non-existent. The problem of assessment though still 

exists. If we were interested in building a 1-out-of-2
2
 

system, simply choosing the two best components that 

exist in the market may not be enough. What is of 

interest is how well the pair works together. The 

optimal pair will be the one with the lowest probability 

of coincident failures of both components of the pair. 

The components that form the best pair may not 

necessarily be the ones which are the best individually. 

For further details on the subtleties of this problem the 

interested reader is referred to a recent survey [16]. 

In this paper we will provide details of an adaptation 

of the model in [17] which allows for an optimal 

selection of a pair of components to be used in a fault-

                                                           
1 Apart from ‘glue code’ (usually referred to as middleware) 

which may be needed to ensure the components can be 

deployed for a given system in a coordinated manner as 

required by the particular system context. 
2 In this configuration the system performs correctly as long 

as 1 of the 2 components works correctly. 



tolerant system. In this model the assessment results are 

subject to uncertainty and we discuss how this may 

impact the decisions about which pair of components 

we choose. The model also enables representing the 

dependencies that exists between uncertainties 

associated with the values of each COTS component in 

the pair. 

The paper is structured as follows: section 2 

contains a brief review of related work on COTS 

assessment; in section 3 we describe the model of 

assessment, in which model parameters are not known 

with certainty and argue in favor of using probability 

distributions as an adequate mechanism to capture this 

uncertainty; in section 4 we provide details of an 

empirical study with off-the-shelf database servers and 

illustrate how our approach can be used to select the 

optimal diverse pair; in section 5 we provide a 

discussion of the method and finally section 6 contains 

conclusions and provisions for further work. 

 

2. Related work  
 

There are a wide variety of COTS assessment 

approaches available. All of them start with an initial 

statement of requirements, which defines what is being 

sought. It has been proposed that the requirements 

initially should not be too stringent, since this would 

discard potentially appropriate COTS candidates at a 

very early stage [9], [18]. It has even been suggested 

[18] that if the requirements are not flexible then the 

COTS based development may not be appropriate and 

bespoke development could be more cost-effective. So 

initially [18] suggests distinguishing between essential 

requirement and those that are negotiable. The 

selection criteria are then based on the essential 

requirements. 

Off-the-shelf-option (OTSO) [2] is a multi-phase 

approach to COTS selection. The phases are: the 

search phase, the screening and evaluation phase and 

the analysis phase. In the first phase COTS products 

are identified. In the screening and evaluation phase the 

products are further filtered using a set of evaluation 

criteria (established from a number of sources, 

including the requirements specification, the high level 

design specification etc). In the analysis phase results 

of the evaluation are analyzed, which lead to the final 

selection of COTS products for inclusion in the system. 

Procurement-oriented requirements engineering 

(PORE) [1] is a process in which requirements are 

defined in parallel with COTS component evaluation 

and selection. [1] propose using prototypes to develop 

knowledge concerning COTS products and their use 

within the wider system. 

Other assessment methods include: CISD (COTS-based 

Integrated System Development) [4], STACE (Socio 

Technical Approach to COTS Evaluation) [10], 

CDSEM (Checklist Driven Software Evaluation 

Methodology) [3], CRE-COTS-Based Requirements 

Engineering Method [6], CEP (Comparative 

Evaluation Process Activities) [7], CBA Process 

Decision Framework [8], A Proactive Evaluation 

Technique [19], CAP-COTS Acquisition Process 

method [5],  Storyboard Process [11], Combined 

Selection of COTS Components [12], PECA Process 

[13] or COTS-DSS [14]. 

 

3. Assessment of Diverse COTS Solutions: 

Bayesian Approach 
 

3.1 Uncertainty in the assessment 
 

Any assessment is conducted with limited resources 

and under various assumptions, which may not hold 

true in real operation. Therefore the outcome of the 

assessment is subject to uncertainty. For example, 

deciding to rate a COTS component exactly 7 out of 10 

according to a chosen scale may be difficult to justify. 

The assessor may be certain that the values of the 

attribute outside the range {6,7} are unreasonable but 

be indifferent between the possible values inside this 

interval. Software reliability is a typical example of an 

attribute which is never known with certainty. 

Probability of failure on a randomly chosen demand 

(pfd) is unknown, but the assessor may be prepared to 

state, with confidence 99%, that it is less than, say 10
-3
. 

The assessor may be even more specific of their doubts 

about the COTS pfd and state that the most likely range 

of the pfd is between 10
-4
 and 10

-3
.  

There are various methods for representing 

uncertainty [20]. Bayesian approach to probabilistic 

modeling is one of the best-known ones and used with 

some success in reliability assessment [21]. It allows 

one to combine, in a mathematically sound way, the 

prior belief (which is ‘subjective’ and possibly 

inaccurate) about the values of a parameter with the 

(‘objective’) evidence from seeing the modeled artifact 

(in this case a COTS component) in operation. 

Combining the prior belief and the evidence from the 

observations in a mathematically correct way leads to a 

posterior belief about the values of the assessed 

attribute. If the prior belief is represented as a 

probability distribution rather than a single value, then 

after seeing the observations we get a posterior 

distribution (quantification of uncertainty) which takes 

into account both the prior knowledge and the 

empirical evidence. 



3.2 Model for Assessment of 1 COTS 

Component with one Attribute 
 

In this section we illustrate how the Bayesian 

approach to assessment is normally applied to assessing 

a single attribute of a single COTS component. Assume 

that the attribute of interest is the component’s 

probability of failure on demand (pfd). 

If the system is treated as a black box, i.e. we can 

only distinguish between COTS component’s failures 

or successes (Fig.1), the Bayesian assessment proceeds 

as follows.  

 

 

 

Fig. 1 - Black-box model of a COTS component 
Let us denote the system pfd as p, with prior 

distribution )(•pf , which characterizes the assessor’s 

knowledge about the system pfd prior to observing the 

COTS component in operation. Assume further that the 

COTS component is subjected to n demands, 

independently drawn from a ‘realistic’ operational 

environment (profile), and r failures are observed. The 

posterior distribution, ),|( nrxf p , of p after the 

observations will be: 

)()|,(),|( xfxrnLnrxf pp ∝           (1) 

where )|,( xrnL  is the likelihood of observing r 

failures in n demands if the pfd were exactly x, which in 

this case of independent demands is given by the 

binomial distribution: 
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For any prior and any observation (r, n), including 

(r=0), the posterior can be calculated. Thus it can be 

applied to all the COTS components included in the 

assessment. Now, the selection can be based on the 

posterior distribution derived for the COTS 

components using different criteria: 

- for a given reliability target the COTS component 

chosen will be the one which has the highest 

probability of having a pfd lower than the given 

target; 

- for a predefined ‘mission’ of say, 1000 demands, 

the COTS component chosen will be the one which 

is most likely to survive the mission without a 

failure. 

 

3.3 Model for Assessment of a Fault-Tolerant 

System Consisting of 2 COTS Components 
 

The Bayesian assessment can also be applied to 

choosing a pair of components. In what follows we will 

describe how the assessment can be performed for a 

system made up of two components. The mathematical 

details can be found in [17] and Appendix A. 

Let us assume that the attribute of interest is again 

the pfd of the system: that is of simultaneous failure of 

both components. Now assume that the system is 

subjected to a series of independently selected 

demands. On each demand the response received from 

each of the COTS components is characterized as 

correct/incorrect. Since we have two COTS 

components clearly 4 combinations exist, which can be 

observed on a demand, as shown in Table 1. 

The four probabilities given in the last column of 

Table 1 sum to unity (i.e. they sum to 1). So if the last 

three probabilities are 0.2, 0.4 and 0.3 respectively then 

the first one 10p  = 1- (0.2 + 0.4 + 0.3) = 0.1. Thus, the 

joint distribution of any three of these probabilities, 

will give an exhaustive description of the COTS pair 

behavior. In statistical terms, the model of the COTS 

component pair has three degrees of freedom. Since we 

have a three variate distribution we need to define three 

prior distributions (not a single one as in the previous 

section): the prior distributions for the pfd of each of 

the components, and then the conditional prior 

distribution for the pfd of both components 

simultaneously. The details of this joint distribution are 

given in [17, section 2] and Appendix A. From this 

distribution we can then derive the marginal 

distribution of common failures which will be used to 

choose the best pair of components in a 1-out-of-2 

setup. 

 

3.4 Utilizing Multiple Sources of Data in the 

Assessment 
 

In some areas of software engineering, especially in 

testing, the usefulness of partitioning the demand 

space has been recognized [22], [23], [24]. The 

Table 1 - The outcomes and their frequency and probabilities for each demand 

Event COTS A Correct COTS B Correct Observations in n demands Probability 

Α No Yes r1 10
p

 

Β Yes No r 2 01
p

 

Γ No No r 3 11
p

 

∆ Yes Yes r 4 00
p

 

 

COTS output 
COTS 

demands  



demand space partitions typically represent different 

types of demands, which may have different likelihoods 

of occurring in realistic environment. Realistic testing, 

thus, would require generating mixes of demands, 

which take into account the likelihood of the types of 

demands. 

In our context, operating in a partitioned demand 

space may imply that the uncertainty associated with 

the attribute of interest may differ among the partitions, 

e.g. as a result of different number of observations 

being made for the different partitions. 

If the demand space is partitioned into M partitions {S1, 

S2, … SM}, then for each of these the assessment will 

be performed as described above, e.g. with two COTS 

components the description provided in section 3.3 will 

apply. As a result M conditional distributions will be 

associated with each pair of COTS components from 

which the conditional uncertainty of interest will be 

expressed, that characterizes the behavior of the 

particular pair of COTS components in the specific 

partition. Finally, in order to compare the competing 

pairs of COTS components the unconditional 

distribution of the probability of joint failure should be 

derived for the particular profile defined over the set of 

partitions, which represents the targeted operational 

environment. In [25] we describe an approach of 

combining the assessment in partitions under the 

assumption of independence of uncertainties across the 

sub-domains. Mathematical details can be found in [25, 

section 3.3] and Appendix B. 

 

4. Empirical Results from a Study with 

Off-The-Shelf Databases 
 

We have reported previously results of a study on 

dependability of off-the-shelf database servers [26]. In 

this paper we will use the data collected in that study to 

demonstrate how the model explained in section 3.3 

can be utilized to perform the selection of the best pair 

of 2 servers. We note that the ideal selection of the best 

pair is to perform statistical testing using the COTS 

products. This, however, is problematic in practice due 

to the lack of suitable middleware
3
 for diverse database 

replication. Database replication is non-trivial as it 

requires synchronizing the operation of the copies 

while serving concurrent clients. Additionally the 

software vendor of the middleware may like to make a 

‘strategic’ choice of an SQL server pair for use in the 

foreseeable future. The application(s), which may be 

                                                           
3 Some rudimentary solutions such as C-JDBC [27] only 

allow for the use of a minimal subset of SQL with diverse 

SQL servers. 

developed by the users of the middleware in the future, 

will be clearly unknown at the time of making the 

selection, therefore performing statistical testing (which 

is crucially dependent on knowing the operational 

profile in the targeted environment) will be impossible.  

Given these difficulties we can use alternative 

options. We will describe in this paper one such option: 

using stressful environments which increase the 

likelihood of failures occurring. After all the fault-

tolerant solution with a pair of servers is intended to 

cope with the difficult situations (demands) where the 

individual channels are deficient. The set of bugs of a 

particular COTS product (in our case SQL server) 

defines one such stressful environment for a server. We 

have collected known bug reports for four SQL servers, 

namely PostgreSQL 7.0, Interbase 6.0, Oracle 8.0.5 

and Microsoft SQL server 7 [26] (for the sake of 

brevity we will use the abbreviations PG, IB, OR and 

MS respectively throughout the rest of the text when 

referring to these servers). The union of the bugs 

reported for all the compared COTS products will form 

a demand space, in which there will be a partition 

stressing each of the products. The logs of the known 

bugs are treated as a sample (without replacement
4
) 

from the corresponding partition (representing the 

server, for which the bug has been reported). We label 

the partitions nameServerS . Partition XS  is called an 

‘own’ partition for server X and a ‘foreign’ partition 

for any other server Y≠X. The servers are then 
compared using the methodology described in sections 

3.3 and 3.4. 

 

4.1 Prior Distributions 
 

The prior distributions used in this study are 

explained next. The joint prior distribution was 

constructed under the assumptions that the respective 

pfds of a server A and a server B are independently 

distributed; in the general case of the failures being 

non-independent events, the conditional distributions of 

the probability of coincident failure are specified for 

every pair of values of the pfds of servers A and B. 

The distributions were assumed to be identical for 

                                                           
4 Strictly, there might be a difference between sampling with 

and without replacement. Our model is based on sampling 

without replacement while the inference procedure described 

in section 3.3 implies sampling with replacement. This is a 

simplification, which in many cases is acceptable (e.g. 

sampling from a large population of units, none of which 

dominates the sampling process, which seems a plausible 

assumption in our case of SQL servers being very complex 

products and likely to contain many unknown bugs). 



each of the four servers across both their ‘own’ and 

‘foreign’ partitions respectively. This assumption was 

made because we did not have reasons to believe 

otherwise. We discuss other options of deriving more 

accurate priors in the Conclusions section. A summary 

of the distributions used is given in Table 2. 

For ‘own’ partitions the prior distributions of pfds of 

both A and B were defined as uniform in the range [L, 

1], where L < 1 accounts for the chance that some of 

the reported bugs might be Heisenbugs
5
 [28], i.e. we 

expect most of the bugs that have been reported for a 

particular server to cause failures when they are run on 

that server (hence the probability of observing an 

incorrect results failure is very close to 1) but, due to 

Heisenbugs, not always so. As a source for L we used 

the study by Chandra and Chen [29]. These authors 

studied the fault reports for three off-the-shelf 

products: MySQL database server, GNOME desktop 

environment and the Apache web-server and reported 

that 5%, 7% and 14%, respectively, of the reported 

bugs were Heisenbugs. Given the variation between the 

products we interpreted these findings by setting L = 1-

(2*0.14), that is twice the highest value of Heisenbugs 

reported, i.e. allowing for even higher proportion of the 

Heisenbugs than recorded in [29]. The prior, thus, is 

expected to be within the range [0.72, 1]. Notice that 

here the prior distribution for incorrect results is being 

defined at a range close to 1 (i.e. high unreliability). 

This is because of the unusual profile of the demands: 

since we are using known bug reports as demands we 

expect most of the bugs to cause failures when we run 

them on the server for which they were reported. 

For ‘foreign’ partitions, however, the prior 

distributions for both pfds of A or B were defined as 

uniform in the range [0, 1]. This is due to the absence 

of any comparative study to guide our expectation 

about the likely value. In passing we note that 

theoretical work such as [30], [31] suggest that diverse 

software versions will tend to fail coincidentally on 

                                                           
5 Gray defines two types of bugs [28]: “Bohrbugs” for bugs 

that appear to be deterministic (they manifest themselves 

each time the bug script is executed); and “Heisenbugs” for 

those that are difficult to reproduce as they only cause 

failures under special conditions (e.g., created by usage 

pattern, other software and internal state) 

‘difficult’ demands. Since all the bugs are ‘difficult’ – 

they are known to be problematic at least for one of the 

servers – we may consider them genuinely difficult, 

hence assume as plausible that the other servers too, are 

likely to fail on them. On the other hand, empirical 

studies such as [32], [33], have shown that significant 

gains can be had via design diversity – hence low 

chances that a particular server will fail on bugs 

reported for other servers are also plausible. In 

summary, we are indifferent between the values of the 

probability that a server will fail from a ‘foreign’ bug.  

All conditional prior distributions for coincident 

failures of the two servers for given values of the 

components’ pfds were defined in the range [0, min 

(value of pfd of A, value of pfd of B)] (since it cannot 

be greater than the probability of either of the two 

individually). This is again due to the rather unique 

profile, under which we apply the inference and the 

lack of comparable studies that would enable us to 

define a more accurate prior, thus ‘indifference’. 

For the comparison we use a distribution defined on 

the partitions which does not favor any of the servers, 

i.e. we assumed that probability of each partition is 

0.25 in the study with 4 servers
6
. 

 

4.2 Observations 
 

The observations using the known bugs of four off-

the-shelf servers are given in Table 3 [26]. Since we 

included 4 servers in our study and we are interested in 

diverse pairs of servers, then we have a total of 6 

different server pairs. We can see that the number of 

bugs collected for each server was different, which 

indicated that the empirical evidence differs between 

the partitions. The reason for this was merely 

differences in the reporting practices operated by the 

vendors of the servers, e.g. unavailability in the public 

domain of fully reproducible bug scripts for the 

                                                           
6 We could use the number of known bugs for each of the 

partition to construct a profile consistent with the 

observations. This is not acceptable for two reasons: i) it will 

favour poor bug reporting practices, an ii) we would have 

used the bugs twice – once in the inference procedure and 

another time in defining the profile, which is theoretically 

unsound. 

Table 2 - The Prior distributions (identical for all four servers) 

Partition Range Distribution 

pfd of server A or B on ‘Own’ partitions 0.72 – 1 Uniform 

pfd of server A or B on ‘Foreign’ partitions 0 – 1 Uniform 

Conditional Distribution of ‘Coincident failures’ in 

both A and B on either partition 
0 – min (value of pfd of A, value of pfd of B) Uniform 

 



commercial servers (especially OR). Therefore, the 

sizes of the samples from the partitions on each server 

are different
7
. Additionally, these servers are not 

functionally identical: they offer different degrees of 

compliance with the SQL standard(s) and even 

proprietary extension to SQL. Bugs affecting one of 

these extensions, thus, literally cannot exist in a server 

that lacks the extension. We called these “dialect-

specific” bugs. Due to this, not all the bugs reported 

for a server can be run on the other servers. Therefore 

the number of ‘foreign’ bug reports varies between the 

servers.  

 

4.3 Posteriors 
 

Table 4 shows the percentiles of the priors and 

posteriors of the probability of a failure of a pair of 

components assuming a 1-out-of-2 setup. The values in 

the cells represent the confidence that the probability of 

                                                           
7  It may seem desirable to have a similar amount of data for 

the different servers, but in reality there are different 

reporting practices for each server. Such differences simply 

translate into different amounts of empirical evidence 

available for the servers, with which our method can cope 

easily. 

a coincident failure of both components of a pair on the 

same randomly chosen demand is no greater than the 

respective confidence level, e.g. for PG & IB the value 

of 0.02 at the 50
th
 percentile can be interpreted as “we 

are 50% confident that the probability of a coincident 

failure of both PG & IB on a randomly chosen demand 

is no greater than 0.02”.  

We can see that universally the best pair across the 

percentiles is the open-source server pair PG & IB. 

There are some interesting remarks to note from the 

results on Table 4, which highlight the value of 

handling the uncertainty explicitly using probability 

distributions, rather than using point estimates of 

attribute values and the value of exploiting the 

dependence in the failure behavior of the servers: 

- It may seem surprising that the best server pair is 

PG & IB given that results in Table 3 show that one 

coincident failure (i.e. r3) was observed for this pair 

and none for the commercial server pair OR & MS. 

But, in Table 3 we also saw that there is a much 

larger number of single channel failures (i.e. r1 and 

r2) observed for the open-source server pair than for 

the commercial server pair which increases our 

confidence of a strong negative correlation in the 

failure behavior of the open-source pair, i.e. we see 

extensive evidence that diversity does work: when 

one of the servers fails the other works correctly. 

No such evidence is available for the commercial 

servers. 

- We cannot make a selection purely on the 50
th
 

percentile of the posterior distribution of the system 

pfd since 3 of the server pairs give identical results. 

Most of the conventional assessment techniques, 

which rely on median values of the assessment 

attributes would have also been unable to provide a 

clear choice. However we can make a selection 

from the 99
th
 percentile of the same setup. 

We have also used the model described in section 

3.1 to calculate the posteriors of single servers (using 

the same prior definitions as for the pairs, the 

observations for each individual server and utilizing the 

Table 3 - The observations for the 6 diverse 
server pairs on the bug reports of the 

different partitions. In the partition column 
the subscript indicates for which server 
these bugs have been reported. N is the 

total number of bugs run and r1, r2 and r3 are 
as defined in Table 1. 

S
er
v
er
 

P
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r 

P
ar
ti
ti
o
n
 

N r1 r2 r3 

S
er
v
er
 

P
ai
r 

P
ar
ti
ti
o
n
 

N r1 r2 r3 

PGS  24 21 0 0 PGS  18 0 0 0 

IBS  28 0 23 1 IBS  31 25 0 0 

ORS  3 0 0 0 ORS  4 0 3 0 

PG 

& 

IB 

MSS  9 0 0 0 

IB 

& 

OR 

MSS  10 1 0 0 

PGS  30 27 0 0 PGS  21 0 1 0 

IBS  24 1 0 0 IBS  35 27 0 2 

ORS  4 0 2 1 ORS  4 0 0 0 

PG 

& 

OR 

MSS  7 0 0 0 

IB 

& 

MS 

MSS  12 0 6 1 

PGS  33 28 0 2 PGS  27 0 2 0 

IBS  25 1 2 0 IBS  30 0 2 0 

ORS  3 0 0 0 ORS  4 3 0 0 

PG 

& 

MS 

MSS  18 1 7 5 

OR 

& 

MS 

MSS  12 0 7 0 

Table 4 - The percentiles of the probability 
of system failure for each server pair. 

50
th
 percentile 99

th
 percentile 

Server Pair 
Prior Posterior Prior Posterior 

PG & IB 0.02 0.12 

PG & OR 0.07 0.19 

PG & MS 0.09 0.20 

IB & OR 0.02 0.14 

IB & MS 0.04 0.14 

OR & MS 

0.3 

0.02 

0.61 

0.14 



partitions theory described in section 3.4). The 

posteriors for each server are shown in Table 5. We 

can see that even the worst pair from Table 4 on all 

percentiles performs better than the best single server 

in Table 5. This is hardly surprising given the fact that 

coincident failures are very rare despite the choice of a 

stressful demand profile (known bug reports). We can 

also see that the differences in the pfd values of a single 

server vs. a diverse pair of servers are quite significant. 

The worst performing server pair has a pfd of no 

worse than 0.20 with confidence 99% whereas the best 

performing single server has a pfd of no worse than 

0.32 with the same confidence level. These results 

indicate that the use of a diverse server pair would 

bring significant dependability gains: the best single 

server may fail up to once in 3 demands while the 

worst pair – up to once in 5 demands.  

 

5. Discussion 
 

The Bayesian model explained in sections 3.3 and 

3.4 can be used for selection of an optimal pair of 

COTS components, as was illustrated in section 4, 

when the attribute of interest is the probability of 

failure on demand. It is a common practice that COTS 

components are assessed in terms of more than 2 

attributes, usually many more. The obvious question, 

therefore, is whether the proposed ‘uncertainty explicit’ 

assessment ‘scales up’ to: 

- more than one attribute 

- fault-tolerant configurations in which more than two 

COTS components are used (for example, three 

COTS components to enable majority voting on the 

results)  

In both of these cases, the question is how the 

method applies if we have to define multivariate 

distributions. Even though mathematically possible, 

Bayesian inference with multivariate distributions is 

difficult. The difficulty has two aspects: 

- specifying a multivariate prior distribution becomes 

problematic because many non-intuitive 

dependencies between the attributes must be 

defined and justified. 

- manipulating a multivariate distribution is non-

trivial even using the most advanced math/statistical 

tools. Calculating the posterior distribution is 

impracticable with more than 3 variates and without 

simplifying assumptions about the dependencies 

between them. 

For scenarios where the COTS components need to 

be assessed in terms of more than one attribute, to 

partially overcome these difficulties, a ‘divide-and-

conquer’ approach can be employed: first the attributes 

can be grouped into smaller groups so that there are 

dependencies within the groups, which the assessment 

can capture, but the groups are assumed independent 

(i.e. knowing the values of the attributes in one group 

does not change the assessor’s knowledge (belief) 

about the values of the attributes included in the other 

group); then, due to the independence assumption, the 

final distribution is the product of the distributions of 

the individual groups. More details on this approach 

can be found in [25, section 5.1].  

The limitations we outlined in this section are not 

specific to our assessment method; in fact they are 

more serious for the conventional methods in which the 

individual attributes are assessed separately. We have 

shown in [25] that even when the assessment of single 

COTS components is done using just two attributes, 

ignoring the dependence between the values of the 

attributes may lead to wrong decisions: a sub-optimal 

component may wrongfully be chosen as the best one. 

If this could be observed with only two attributes, then 

it is bound to be much more pronounced with more 

than two attributes, where many more dependencies 

may exist between the values of the attributes.   

The “divide and conquer” approach to attributes 

also has its problems. It can only be applied if the 

assessor can justify that assuming a set of independent 

pairs is plausible. Despite this problem, however, using 

small independent groups is still an improvement 

compared with the extreme assumption used implicitly 

in the existing assessment methods surveyed, that all of 

the attributes are independent.  

It is worth pointing out that many of the attributes, 

such as ‘has the required functions’, various forms of 

compliance, e.g. ‘complies with certain standards’, 

‘Backward Compatibility’, etc. [34], do not require any 

uncertainty attached to their values. Assessment with 

respect to such attributes normally leads to a reduction 

of the number of the COTS components (which satisfy 

all these ‘binary’ attributes), for which the more 

thorough assessment with respect to the remaining 

‘non-binary’ attributes can proceed [35]. 

 

6. Conclusions 
 

Software diversity is a well known and well studied 

subject in the literature [36]. It is recognized that often 

Table 5 - The percentiles of the probability of 
failure on demand for each single server. 

Posteriors PG IB OR MS 

50
th
 percentile 0.41 0.30 0.26 0.30 

99
th
 percentile 0.54 0.43 0.32 0.42 



the only way of obtaining dependability assurances is 

to employ software diversity [15]. With the plethora of 

off-the-shelf components available fault tolerance 

through software diversity becomes a much more 

achievable and affordable solution especially since 

many of the components are open-source and free. The 

important questions for a given project is how much 

dependability gains there will actually be from 

employing diversity, or at least given a set of diverse 

software alternatives which is the best for a given 

application. 

We applied methods of Bayesian assessment 

developed elsewhere [17], [25]. We illustrated how our 

model can be used with the collected evidence to 

perform the assessment and choose the best server pair. 

We then compared the results of the posteriors of 

server pairs with those of single servers and we saw 

that even the worst server pair still performs much 

better than the best single server. This indicates that 

significant dependability gains may be obtained from 

using diverse off-the-shelf database servers. It is also 

interesting to note that in our assessment the best single 

server is a commercial server, namely Oracle, whereas 

the best pair of components is the pair PostgreSQL & 

Interbase both of which are free and open-source 

components.   

The prior definition in Bayesian assessment is 

crucial. In our study we have assumed that prior 

distributions for each component are the same. This 

was due to the unavailability of other known evidence 

that we could use to define more accurate priors. 

However this problem can be remedied by utilizing 

evidence from earlier versions of the servers and then 

doing multiple steps of inference, i.e. if we want to 

perform the assessment with later versions of the 

servers in our study we can use the posteriors from this 

step as priors for the later versions, collect the new 

evidence for the later versions and then use the model 

to derive the posteriors for each. 

Future work that is desirable would be to enable 

effective assessment with a higher number of COTS 

components in a diverse setup (more than two 

components may be desirable in a diverse setup to 

enable majority voting on the results from the 

components). 
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Appendix A – Component-Pair Assessment 
 

Assume that the attribute of interest is the 

probability of failure on demand (pfd). Now assume 

that the system is subjected to a series of independently 

selected demands. On each demand the response 

received from the COTS components is characterized 

as correct/incorrect. But since we have two COTS 

components clearly 4 combinations exist, which can be 

observed on a randomly chosen demand, as shown in 

Table 1 of section 3. 

The four probabilities given in the last column of 

Table 1 sum to unity (i.e. they sum to 1). This 

constraint remains even if we treat the probabilities in 

Table 1 as random variables: their sum will always be 

1. Thus, the joint distribution of any three of these 

probabilities, e.g. ),,(
111001 ,, •••pppf , gives an 

exhaustive description of the behavior of a COTS 

components pair. In statistical terms, the model has 

three degrees of freedom.  

The probabilities of getting an incorrect response on 

a random demand from COTS A, let’s denote it pA, or 

COTS B, pB, respectively, can be expressed as:  

1110 pppA +=  and 1101 pppB += . 

p11 represents the probability of receiving an 

incorrect response from both the COTS components. 

Hence, a notation pAB ≡ p11 will capture better the 
intuitive meaning of the event it is assigned to. Instead 

of using ),,(
111001 ,, •••pppf  another distribution, which 

can be derived from it through functional 

transformation, can be used. We 

use ),,(,, •••
ABBA pppf . We define the joint prior 



distribution as: 

),,(,, •••
ABBA pppf  =   

),|(,| BAppp ppf
BAAB
•  ),(, ••

BA ppf    (3) 

under the assumption that pA and pB are 

independently distributed, i.e.   

),(, ••
BA ppf  =  )(•

Ap
f )(•

Bp
f         (4) 

It can be shown that for a given observation (r1, r2, 

and r3 in N demands) the posterior joint distribution 

can be calculated as: 

is the multinomial likelihood of the observation (N , 

r1, r2, r3). 

The marginal distribution )(•
ABpf , which is used 

for comparison of the COTS component pairs, can be 

derived from ),,(,, •••
ABBA pppf  by integrating out 

pA and pB, i.e. 

 
)(•

ABpf = BAppp
pp

dpdpf
ABBA

BA

),,(,, •••∫∫  (7) 

 

Appendix B – Partitions Theory 
 

If the demand space is partitioned into M partitions 

{S1, S2, … SM}, then for each of these the assessment 

will be performed as described in section 3.3, e.g. with 

two COTS components the description provided in 

section 3.3 (with details given in Appendix A) will 

apply. As a result M conditional distributions will be 

associated with each pair of COTS components, e.g. 

using two components these can be denoted as 

)|,,(,, ippp Sf
ABBA

••• , from which the 

conditional uncertainty )|( ip Sf
AB

•  will be 

expressed. This distribution characterizes the 

probability of failure, iAB SP | , of both components in 

the specific partition. Finally, in order to compare the 

competing COTS pairs the unconditional distribution 

)(•
ABpf  should be derived for the particular profile 

defined over the set of partitions, which represents the 

targeted operational environment.  

Let us denote the profile of the targeted environment 

as { ( ) ( )MSPSP ,...,1 }, and assume that these are known 

with certainty. The marginal probability of failure of a 

COTS component pair, according to the formula of full 

probability is: 

( )∑
=

×=
M

i
iiABAB SPSPP

1

|             (8) 

The distribution of this random variable, ABP , 

depends on the joint distribution, 

( )••,...,|,...,| 1 MABAB SPSPf , i.e. of the conditional 

probabilities of failure in sub-domains. In some setups 

it may be plausible to assume that the conditional 

probabilities of failure (in the partitions that is) are 

independently distributed, i.e.: 

( ) ( ) ( )∏
=

••=••
M

i
SPSPSPSP MABABMABAB

fff
1

|||,...,| ...,...,
11

 (9) 

Such an assumption represents the assessor’s belief 

that learning something about the probability of failure, 

iAB SP | , of a particular COTS component pair in 

partition i will not change their belief about the 

probability of failure, jAB SP | , of the same COTS 

component pair in another partition. The assumption is 

consistent with applying inferences to the individual 

partitions, i.e. conditional on the demands coming from 

a particular partition.  

Under (9) the unconditional probability of COTS 

component pair failure (8) can be expressed as a 

convolution of the distributions of the random variables 

( ) ( )iiABw SPSPiP ×= | , i.e.: 

( )iPP w
w
AB ⊗=                (10) 

The selection of the best COTS component pair, out 

of the available alternatives, then will be based on the 

marginal distributions, )(•w
ABp

f , associated with the 

available COTS component pairs. 

∫∫∫
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