12,396 research outputs found
Velocity Relaxation in a Strongly Coupled Plasma
Collisional relaxation of Coulomb systems is studied in the strongly coupled
regime. We use an optical pump-probe approach to manipulate and monitor the
dynamics of ions in an ultracold neutral plasma, which allows direct
measurement of relaxation rates in a regime where common Landau-Spitzer theory
breaks down. Numerical simulations confirm the experimental results and display
non-Markovian dynamics at early times.Comment: 5 pages, 5 figure
Coulomb crystallization in expanding laser-cooled neutral plasmas
We present long-time simulations of expanding ultracold neutral plasmas,
including a full treatment of the strongly coupled ion dynamics. Thereby, the
relaxation dynamics of the expanding laser-cooled plasma is studied, taking
into account elastic as well as inelastic collisions. It is demonstrated that,
depending on the initial conditions, the ionic component of the plasma may
exhibit short-range order or even a superimposed long-range order resulting in
concentric ion shells. In contrast to ionic plasmas confined in traps, the
shell structures are built up from the center of the plasma cloud rather than
from the periphery
Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films
A theoretical study of a dielectrophoretic force, i.e. the force acting on an
electrically neutral particle in the inhomogeneous electric field, which is
produced by a ferroelectric domain pattern, is presented. It has been shown by
several researchers that artificially prepared domain patterns with given
geometry in ferroelectric single crystals represent an easy and flexible method
for patterning dielectric nanoobjects using dielectrophoretic forces. The
source of the dielectrophoretic force is a strong and highly inhomogeneous
(stray) electric field, which exists in the vicinity of the ferroelectric
domain walls at the surface of the ferroelectric film. We analyzed
dielectrophoretic forces in the model of a ferroelectric film of a given
thickness with a lamellar 180 domain pattern. The analytical formula
for the spatial distribution of the stray field in the ionic liquid above the
top surface of the film is calculated including the effect of free charge
screening. The spatial distribution of the dielectrophoretic force produced by
the domain pattern is presented. The numerical simulations indicate that the
intersection of the ferroelectric domain wall and the surface of the
ferroelectric film represents a trap for dielectric nanoparticles in the case
of so called positive dielectrophoresis. The effects of electrical neutrality
of dielectric nanoparticles, free charge screening due to the ionic nature of
the liquid, domain pattern geometry, and the Brownian motion on the mechanism
of nanoparticle deposition and the stability of the deposited pattern are
discussed.Comment: Accepted in the Journal of Applied Physics, 10 pages, 5 figure
Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence
We show that Rydberg states in an ultra-cold gas can be excited with strongly
preferred nearest-neighbor distance if densities are well below saturation. The
scheme makes use of an echo sequence in which the first half of a laser pulse
excites Rydberg states while the second half returns atoms to the ground state,
as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002].
Near to the end of the echo sequence, almost any remaining Rydberg atom is
separated from its next-neighbor Rydberg atom by a distance slightly larger
than the instantaneous blockade radius half-way through the pulse. These
correlations lead to large deviations of the atom counting statistics from a
Poissonian distribution. Our results are based on the exact quantum evolution
of samples with small numbers of atoms. We finally demonstrate the utility of
the omega-expansion for the approximate description of correlation dynamics
through an echo sequence.Comment: 8 pages, 6 figure
HESS J1632-478: an energetic relic
HESS J1632-478 is an extended and still unidentified TeV source in the
galactic plane. In order to identify the source of the very high energy
emission and to constrain its spectral energy distribution, we used a deep
observation of the field obtained with XMM-Newton together with data from
Molonglo, Spitzer and Fermi to detect counterparts at other wavelengths. The
flux density emitted by HESS J1632-478 peaks at very high energies and is more
than 20 times weaker at all other wavelengths probed. The source spectrum
features two large prominent bumps with the synchrotron emission peaking in the
ultraviolet and the external inverse Compton emission peaking in the TeV. HESS
J1632-478 is an energetic pulsar wind nebula with an age of the order of 10^4
years. Its bolometric (mostly GeV-TeV) luminosity reaches 10% of the current
pulsar spin down power. The synchrotron nebula has a size of 1 pc and contains
an unresolved point-like X-ray source, probably the pulsar with its wind
termination shock.Comment: A&A accepted, 9 pages, 5 figures, 4 table
Nachbestrahlungsuntersuchungen eines Brennelementbündels des VAK-Reaktors und Vergelich mit Rechnungen. EUR 4690. = Postirradiation examinations of a fuel bundle of the VAK-reactor and comparison with calculations. EUR 4690.
Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas
We present techniques to perturb, measure and model the ion velocity
distribution in an ultracold neutral plasma produced by photoionization of
strontium atoms. By optical pumping with circularly polarized light we promote
ions with certain velocities to a different spin ground state, and probe the
resulting perturbed velocity distribution through laser-induced fluorescence
spectroscopy. We discuss various approaches to extract the velocity
distribution from our measured spectra, and assess their quality through
comparisons with molecular dynamic simulationsComment: 13 pages, 8 figure
- …