393 research outputs found

    Fermionic Corrections to the Three-Loop Matching Coefficient of the Vector Current

    Full text link
    In this paper we consider the matching coefficient of the vector current between Quantum Chromodynamics (QCD) and Non-Relativistic QCD (NRQCD) to three-loop order in perturbation theory. We evaluate the fermionic corrections containing a closed massless fermion loop. The results are building blocks both for the bottom and top quark system at threshold. We explain in detail the methods used for the evaluation of the Feynman diagrams, classify the occurring master integrals and provide results for the latter. The numerical effects are significant. They have the tendency to improve the behaviour of the perturbative series -- both for the bottom and top quark system.Comment: 21 page

    The static potential: lattice versus perturbation theory in a renormalon-based approach

    Get PDF
    We compare, for the static potential and at short distances, perturbation theory with the results of lattice simulations. We show that a renormalon-dominance picture explains why in the literature sometimes agreement, and another disagreement, is found between lattice simulations and perturbation theory depending on the different implementations of the latter. We also show that, within a renormalon-based scheme, perturbation theory agrees with lattice simulations.Comment: 18 pages, 11 figures, lattice data of Necco and Sommer introduced, references added, some lengthier explanations given, physical results unchange

    Bottonium mass - evaluation using renormalon cancellation

    Full text link
    We present a method of calculating the bottonium mass M[Upsilon(1S)] = [2 mb + E(b barb)]. The binding energy is separated into the soft and ultrasoft components E(b barb)=[E(s)+E(us)] by requiring the reproduction of the correct residue parameter value of the renormalon singularity for the renormalon cancellation in the sum [2 mb + E(s)]. The Borel resummation is then performed separately for (2 mb) and E(s), using the infrared safe MSbar mass [bar mb] as input. E(us) is estimated. Comparing the result with the measured value of M[Upsilon(1S)], the extracted value of the quark mass is [bar mb](mu=[bar mb]) = 4.241 +- 0.068 GeV (for the central value alphas(MZ)=0.1180). This value of [bar mb] is close to the earlier values obtained from the QCD spectral sum rules, but lower than from pQCD evaluations without the renormalon structure for heavy quarkonia.Comment: 4 pages, uses espcrc2.sty, presented at QCD0

    NRQCD Analysis of Bottomonium Production at the Tevatron

    Get PDF
    Recent data from the CDF collaboration on the production of spin-triplet bottomonium states at the Tevatron p \bar p collider are analyzed within the NRQCD factorization formalism. The color-singlet matrix elements are determined from electromagnetic decays and from potential models. The color-octet matrix elements are determined by fitting the CDF data on the cross sections for Upsilon(1S), Upsilon(2S), and Upsilon(3S) at large p_T and the fractions of Upsilon(1S) coming from chi_b(1P) and chi_b(2P). We use the resulting matrix elements to predict the cross sections at the Tevatron for the spin-singlet states eta_b(nS) and h_b(nP). We argue that eta_b(1S) should be observable in Run II through the decay eta_b -> J/psi + J/psi.Comment: 20 pages, 3 figure

    Electroweak non-resonant NLO corrections to e+ e- -> W+ W- b bbar in the t tbar resonance region

    Full text link
    We analyse subleading electroweak effects in the top anti-top resonance production region in e+ e- collisions which arise due to the decay of the top and anti-top quarks into the W+ W- b bbar final state. These are NLO corrections adopting the non-relativistic power counting v ~ alpha_s ~ sqrt(alpha_EW). In contrast to the QCD corrections which have been calculated (almost) up to NNNLO, the parametrically larger NLO electroweak contributions have not been completely known so far, but are mandatory for the required accuracy at a future linear collider. The missing parts of these NLO contributions arise from matching coefficients of non-resonant production-decay operators in unstable-particle effective theory which correspond to off-shell top production and decay and other non-resonant irreducible background processes to t tbar production. We consider the total cross section of the e+ e- -> W+ W- b bbar process and additionally implement cuts on the invariant masses of the W+ b and W- bbar pairs.Comment: LaTeX, 33 pages, 6 figure

    NNLO tau+tau- production cross section at threshold

    Full text link
    The threshold behaviour of the cross section sigma(e+e- -> tau+tau-) is analysed, taking into account the known higher-order corrections. At present, this observable can be determined to next-to-next-to-leading order (NNLO) in a combined expansion in powers of alpha_s and fermion velocities.Comment: 4 pages, 3 figures. To appear in the proceedings of QCD 02: High-Energy Physics International Conference in Quantum Chromodynamics, Montpellier, France, 2-9 Jul 200

    Heavy-Light Meson Decay Constant from QCD Sum Rules in Three-Loop Approximation

    Get PDF
    In this paper we compute the decay constant of the pseudo-scalar heavy-light mesons in the heavy quark effective theory framework of QCD sum rules. In our analysis we include the recently evaluated three-loop result of order αs2\alpha_s^2 for the heavy-light current correlator. The value of the bottom quark mass, which essentially limits the accuracy of the sum rules for BB meson, is extracted from the nonrelativistic sum rules for Υ\Upsilon resonances in the next-to-next-to-leading approximation. We find stability of our result with respect to all types of corrections and the specific form of the sum rule which reduces the uncertainty. Our results fB=206±20f_B=206\pm 20 MeV and fD=195±20f_D=195\pm 20 MeV for the BB and DD meson decay constants are in impressive agreement with recent lattice calculations.Comment: minor editorial changes, references added, to appear in PR

    Threshold production of unstable top

    Full text link
    We develop a systematic approach to describe the finite lifetime effects in the threshold production of top quark-antiquark pairs. It is based on the nonrelativistic effective field theory with an additional scale rho^(1/2) m_t characterizing the dynamics of the top-quark decay, which involves a new expansion parameter rho=1-m_W/m_t. Our method naturally resolves the problem of spurious divergences in the analysis of the unstable top production. Within this framework we compute the next-to-leading nonresonant contribution to the total cross section of the top quark-antiquark threshold production in electron-positron annihilation through high-order expansion in rho and confirm the recently obtained result. We extend the analysis to the next-to-next-to-leading O(alpha_s) nonresonant contribution which is derived in the leading order in rho. The dominant nonresonant contribution to the top-antitop threshold production in hadronic collisions is also obtained.Comment: 20 pages, 7 figures; v2: added a section on invariant mass cuts and one reference, minor changes in Introduction, results unchanged, matches published versio

    Statistical Reconstruction of Qutrits

    Full text link
    We discuss a procedure of measurement followed by the reproduction of the quantum state of a three-level optical system - a frequency- and spatially degenerate two-photon field. The method of statistical estimation of the quantum state based on solving the likelihood equation and analyzing the statistical properties of the obtained estimates is developed. Using the root approach of estimating quantum states, the initial two-photon state vector is reproduced from the measured fourth moments in the field . The developed approach applied to quantum states reconstruction is based on the amplitudes of mutually complementary processes. Classical algorithm of statistical estimation based on the Fisher information matrix is generalized to the case of quantum systems obeying Bohr's complementarity principle. It has been experimentally proved that biphoton-qutrit states can be reconstructed with the fidelity of 0.995-0.999 and higher.Comment: Submitted to Physical Review

    1S and MSbar Bottom Quark Masses from Upsilon Sum Rules

    Full text link
    The bottom quark 1S mass, Mb1SM_b^{1S}, is determined using sum rules which relate the masses and the electronic decay widths of the Υ\Upsilon mesons to moments of the vacuum polarization function. The 1S mass is defined as half the perturbative mass of a fictitious 3S1{}^3S_1 bottom-antibottom quark bound state, and is free of the ambiguity of order ΛQCD\Lambda_{QCD} which plagues the pole mass definition. Compared to an earlier analysis by the same author, which had been carried out in the pole mass scheme, the 1S mass scheme leads to a much better behaved perturbative series of the moments, smaller uncertainties in the mass extraction and to a reduced correlation of the mass and the strong coupling. We arrive at Mb1S=4.71±0.03M_b^{1S}=4.71\pm 0.03 GeV taking αs(MZ)=0.118±0.004\alpha_s(M_Z)=0.118\pm 0.004 as an input. From that we determine the MSˉ\bar{MS} mass as mˉb(mˉb)=4.20±0.06\bar m_b(\bar m_b) = 4.20 \pm 0.06 GeV. The error in mˉb(mˉb)\bar m_b(\bar m_b) can be reduced if the three-loop corrections to the relation of pole and MSˉ\bar{MS} mass are known and if the error in the strong coupling is decreased.Comment: 20 pages, latex; numbers in Tabs. 2,3,4 corrected, a reference and a comment on the fitting procedure added, typos in Eqs. 2 and 23 eliminate
    corecore