35,360 research outputs found

    Simulations of a classical spin system with competing superexchange and double-exchange interactions

    Full text link
    Monte-Carlo simulations and ground-state calculations have been used to map out the phase diagram of a system of classical spins, on a simple cubic lattice, where nearest-neighbor pairs of spins are coupled via competing antiferromagnetic superexchange and ferromagnetic double-exchange interactions. For a certain range of parameters, this model is relevant for some magnetic materials, such as doped manganites, which exhibit the remarkable colossal magnetoresistance effect. The phase diagram includes two regions in which the two sublattice magnetizations differ in magnitude. Spin-dynamics simulations have been used to compute the time- and space-displaced spin-spin correlation functions, and their Fourier transforms, which yield the dynamic structure factor S(q,ω)S(q,\omega) for this system. Effects of the double-exchange interaction on the dispersion curves are shown.Comment: Latex, 3 pages, 3 figure

    Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions

    Full text link
    We study asymptotic behaviour at time infinity of solutions close to the non-zero constant equilibrium for the Gross-Pitaevskii equation in two and three spatial dimensions. We construct a class of global solutions with prescribed dispersive asymptotic behavior, which is given in terms of the linearized evolution

    Constraints on the long-period moment-dip tradeoff for the Tohoku earthquake

    Get PDF
    Since the work of Kanamori and Given (1981), it has been recognized that shallow, pure dip-slip earthquakes excite long-period surface waves such that it is difficult to independently constrain the moment (M_0) and the dip (ÎŽ) of the source mechanism, with only the product M_0 sin(2ÎŽ) being well constrained. Because of this, it is often assumed that the primary discrepancies between the moments of shallow, thrust earthquakes are due to this moment-dip tradeoff. In this work, we quantify how severe this moment-dip tradeoff is depending on the depth of the earthquake, the station distribution, the closeness of the mechanism to pure dip-slip, and the quality of the data. We find that both long-period Rayleigh and Love wave modes have moment-dip resolving power even for shallow events, especially when stations are close to certain azimuths with respect to mechanism strike and when source depth is well determined. We apply these results to USGS W phase inversions of the recent M9.0 Tohoku, Japan earthquake and estimate the likely uncertainties in dip and moment associated with the moment- dip tradeoff. After discussing some of the important sources of moment and dip error, we suggest two methods for potentially improving this uncertainty

    Phonon-mediated tuning of instabilities in the Hubbard model at half-filling

    Full text link
    We obtain the phase diagram of the half-filled two-dimensional Hubbard model on a square lattice in the presence of Einstein phonons. We find that the interplay between the instantaneous electron-electron repulsion and electron-phonon interaction leads to new phases. In particular, a dx2−y2_{x^2-y^2}-wave superconducting phase emerges when both anisotropic phonons and repulsive Hubbard interaction are present. For large electron-phonon couplings, charge-density-wave and s-wave superconducting regions also appear in the phase diagram, and the widths of these regions are strongly dependent on the phonon frequency, indicating that retardation effects play an important role. Since at half-filling the Fermi surface is nested, spin-density-wave is recovered when the repulsive interaction dominates. We employ a functional multiscale renormalization-group method that includes both electron-electron and electron-phonon interactions, and take retardation effects fully into account.Comment: 8 pages, 5 figure

    Anatomy, histology, and ontogeny of the sesamoid cartilage in the jaw muscles of the American alligator (Alligator mississippiensis) [abstract]

    Get PDF
    The cartilago transiliens is a characteristic cartilaginous nodule inside crocodilian jaw muscles. Encased by a fibrous sheath, the cartilago transiliens lies between the pterygoid buttress and the mandible, providing attachment sites for m. pseudotemporalis superficialis dorsally, and m. intramandibularis, ventrally. Previous research showed that the cartilago transiliens functions as a jaw-locking mechanism and bears sesamoid-like features, rather than those of a novel structure. Fibrocartilages often form inside portions of tendons that wrap around bone. These organized, incompressible sesamoid tissues prevent tendon flattening, increase mechanical advantage, and tend to ossify in mammals and reptile limbs, but not in most other instances. Here we investigate the gross anatomy and microstructure of the cartilago transiliens in the American alligator (Alligator mississippiensis)
    • 

    corecore