231 research outputs found

    WIMP Dark Matter and the QCD Equation of State

    Get PDF
    Weakly Interacting Massive Particles (WIMPs) of mass m freeze out at a temperature T_f ~ m/25, i.e. in the range 400 MeV -- 40 GeV for a particle in the typical mass range 10 -- 1000 GeV. The WIMP relic density, which depends on the effective number of relativistic degrees of freedom at T_f, may be measured to better than 1% by Planck, warranting comparable theoretical precision. Recent theoretical and experimental advances in the understanding of high temperature QCD show that the quark gluon plasma departs significantly from ideal behaviour up to temperatures of several GeV, necessitating an improvement of the cosmological equation of state over those currently used. We discuss how this increases the relic density by approximately 1.5 -- 3.5% in benchmark mSUGRA models, with an uncertainly in the QCD corrections of 0.5 -- 1 %. We point out what further work is required to achieve a theoretical accuracy comparable with the expected observational precision, and speculate that the effective number of degrees of freedom at T_f may become measurable in the foreseeable future.Comment: 4pp, 2figs. More info including Matlab scripts used to generate equation of state curves at http://www.pact.cpes.sussex.ac.uk/arXiv/hep-ph/0501232

    Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential

    Full text link
    We present unambiguous evidence from lattice simulations of QCD with three degenerate quark species for two tricritical points in the (T,m) phase diagram at fixed imaginary \mu/T=i\pi/3 mod 2\pi/3, one in the light and one in the heavy mass regime. These represent the boundaries of the chiral and deconfinement critical lines continued to imaginary chemical potential, respectively. It is demonstrated that the shape of the deconfinement critical line for real chemical potentials is dictated by tricritical scaling and implies the weakening of the deconfinement transition with real chemical potential. The generalization to non-degenerate and light quark masses is discussed.Comment: 4 pages, 5 figure

    Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction

    Get PDF
    The large observation footprint of low-frequency satellite microwave emissions complicates the interpretation of near-surface soil moisture retrievals. While the effect of sub-footprint lateral heterogeneity is relatively limited under unsaturated conditions, open water bodies (if not accounted for) cause a strong positive bias in the satellite-derived soil moisture retrieval. This bias is generally assumed static and associated with large, continental lakes and coastal areas. Temporal changes in the extent of smaller water bodies as small as a few percent of the sensor footprint size, however, can cause significant and dynamic biases. We analysed the influence of such small open water bodies on near-surface soil moisture products derived from actual (non-synthetic) data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) for three areas in Oklahoma, USA. Differences between on-ground observations, model estimates and AMSR-E retrievals were related to dynamic estimates of open water fraction, one retrieved from a global daily record based on higher frequency AMSR-E data, a second derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and a third through inversion of the radiative transfer model, used to retrieve soil moisture. The comparison demonstrates the presence of relatively small areas (<0.05) of open water in or near the sensor footprint, possibly in combination with increased, below-critical vegetation density conditions (optical density <0.8), which contribute to seasonally varying biases in excess of 0.2 (m<sup>3</sup> m<sup>−3</sup>) soil water content. These errors need to be addressed, either through elimination or accurate characterisation, if the soil moisture retrievals are to be used effectively in a data assimilation scheme

    L band push broom microwave radiometer: Soil moisture verification and time series experiment Delmarva Peninsula

    Get PDF
    The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research

    The pressure of strong coupling lattice QCD with heavy quarks, the hadron resonance gas model and the large N limit

    Full text link
    In this paper we calculate the pressure of pure lattice Yang-Mills theories and lattice QCD with heavy quarks by means of strong coupling expansions. Dynamical fermions are introduced with a hopping parameter expansion, which also allows for the incorporation of finite quark chemical potential. We show that in leading orders the results are in full agreement with expectations from the hadron resonance gas model, thus validating it with a first principles calculation. For pure Yang-Mills theories we obtain the corresponding ideal glueball gas, in QCD with heavy quarks our result equals that of an ideal gas of mesons and baryons. Another finding is that the Yang-Mills pressure in the large N limit is of order ∼N0\sim N^0 to the calculated orders, when the inverse 't Hooft coupling is used as expansion parameter. This property is expected in the confined phase, where our calculations take place.Comment: 12 pages, 4 figure

    The thermal QCD transition with two flavours of twisted mass fermions

    Full text link
    We investigate the thermal QCD transition with two flavors of maximally twisted mass fermions for a set of pion masses, 300 MeV \textless mπm_\pi \textless 500 MeV, and lattice spacings aa \textless 0.09 fm. We determine the pseudo-critical temperatures and discuss their extrapolation to the chiral limit using scaling forms for different universality classes, as well as the scaling form for the magnetic equation of state. For all pion masses considered we find resonable consistency with O(4) scaling plus leading corrections. However, a true distinction between the O(4) scenario and a first order scenario in the chiral limit requires lighter pions than are currently in use in simulations of Wilson fermions.Comment: 11 pages, 11 figure

    Resummation scheme for 3d Yang-Mills and the two-loop magnetic mass for hot gauge theories

    Full text link
    Perturbation theory for non-Abelian gauge theories at finite temperature is plagued by infrared divergences caused by magnetic soft modes ∼g2T\sim g^2T, which correspond to the fields of a 3d Yang-Mills theory. We revisit a gauge invariant resummation scheme to solve this problem by self-consistent mass generation using an auxiliary scalar field, improving over previous attempts in two respects. First, we generalise earlier SU(2) treatments to SU(N). Second, we obtain a gauge independent two-loop gap equation, correcting an error in the literature. The resulting two-loop approximation to the magnetic mass represents a ∼15\sim 15% correction to the leading one-loop value, indicating a reasonable convergence of the resummation.Comment: 16 pages, 3 figure

    Real-time static potential in hot QCD

    Full text link
    We derive a static potential for a heavy quark-antiquark pair propagating in Minkowski time at finite temperature, by defining a suitable gauge-invariant Green's function and computing it to first non-trivial order in Hard Thermal Loop resummed perturbation theory. The resulting Debye-screened potential could be used in models that attempt to describe the ``melting'' of heavy quarkonium at high temperatures. We show, in particular, that the potential develops an imaginary part, implying that thermal effects generate a finite width for the quarkonium peak in the dilepton production rate. For quarkonium with a very heavy constituent mass M, the width can be ignored for T \lsim g^2 M/12\pi, where g^2 is the strong gauge coupling; for a physical case like bottomonium, it could become important at temperatures as low as 250 MeV. Finally, we point out that the physics related to the finite width originates from the Landau-damping of low-frequency gauge fields, and could be studied non-perturbatively by making use of the classical approximation.Comment: 20 pages. v2: a number of clarifications and a few references added; published versio

    Stress Transmission through Three-Dimensional Ordered Granular Arrays

    Full text link
    We measure the local contact forces at both the top and bottom boundaries of three-dimensional face-centered-cubic and hexagonal-close-packed granular crystals in response to an external force applied to a small area at the top surface. Depending on the crystal structure, we find markedly different results which can be understood in terms of force balance considerations in the specific geometry of the crystal. Small amounts of disorder are found to create additional structure at both the top and bottom surfaces.Comment: 9 pages including 9 figures (many in color) submitted to PR

    The deconfinement transition of finite density QCD with heavy quarks from strong coupling series

    Get PDF
    Starting from Wilson's action, we calculate strong coupling series for the Polyakov loop susceptibility in lattice gauge theories for various small N_\tau in the thermodynamic limit. Analysing the series with Pad\'e approximants, we estimate critical couplings and exponents for the deconfinement phase transition. For SU(2) pure gauge theory our results agree with those from Monte-Carlo simulations within errors, which for the coarser N_\tau=1,2 lattices are at the percent level. For QCD we include dynamical fermions via a hopping parameter expansion. On a N_\tau=1 lattice with N_f=1,2,3, we locate the second order critical point where the deconfinement transition turns into a crossover. We furthermore determine the behaviour of the critical parameters with finite chemical potential and find the first order region to shrink with growing \mu. Our series moreover correctly reflects the known Z(N) transition at imaginary chemical potential.Comment: 18 pages, 7 figures, typos corrected, version published in JHE
    • …
    corecore