243 research outputs found

    Unconventional Superconductivity in UPd_2Al_3 from Realistic Selfconsistent Calculations

    Full text link
    Realistic selfconsistent calculations of unconventional superconductivity in a heavy-fermion material are reported. Our calculations for UPd2_2Al3_3 start from accurate energy band dispersions that are computed within the local spin-density functional theory and provide Fermi surfaces in agreement with experiment. Using physically motivated, realistic pairing potentials it is shown that the superconducting gap has two lines of nodes around the z-axis, thus exhibiting d-wave symmetry in the A1gA_{1g} representation of the D6hD_{6h} point group. Our results suggest that in a superconductor with gap nodes, the prevailing gap symmetry is dictated by the constraint that nodes must be as far as possible from high-density areas.Comment: 4 pages and 3 figures (two color figures

    Influence of laser-excited electron distributions on the x-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni

    Full text link
    In pump-probe experiments an intensive laser pulse creates non-equilibrium excited electron distributions in the first few hundred femtoseconds after the pulse. The influence of non-equilibrium electron distributions caused by a pump laser on the apparent X-ray magnetic circular dichroism (XMCD) signal of Ni is investigated theoretically here for the first time, considering electron distributions immediately after the pulse as well as thermalized ones, that are not in equilibrium with the lattice or spin systems. The XMCD signal is shown not to be simply proportional to the spin momentum in these situations. The computed spectra are compared to recent pump-probe XMCD experiments on Ni. We find that the majority of experimentally observed features considered to be a proof of ultrafast spin momentum transfer to the lattice can alternatively be attributed to non-equilibrium electron distributions. Furthermore, we find the XMCD sum rules for the atomic spin and orbital magnetic moment to remain valid, even for the laser induced non-equilibrium electron distributions.Comment: 6 pages, 3 figure

    Small-q Phonon Mediated Unconventional Superconductivity in the Iron Pnictides

    Full text link
    We report self-consistent calculations of the gap symmetry for the iron-based high-temperature superconductors using realistic small-q phonon mediated pairing potentials and four-band energy dispersions. When both electron and hole Fermi surface pockets are present, we obtain the nodeless s±s_\pm state that was first encountered in a spin-fluctuations mechanism picture. Nodal gap structures such as dx2−y2d_{x^2-y^2} and s±+dx2−y2s_\pm+d_{x^2-y^2} and even a p-wave triplet state, are accessible upon doping within our phononic mechanism. Our results resolve the conflict between phase sensitive experiments reporting a gap changing sign attributed previously only to a non-phononic mechanism and isotope effect measurements proving the involvement of phonons in the pairing.Comment: Final version. Corrected typos. Reference adde

    Anomalous Ferromagnetism of Monatomic Co Wire at the Pt(111) Surface Step Edge

    Full text link
    A first-principles investigation of the anomalous ferromagnetism of a quasi-one-dimensional Co chain at the Pt(111) step edge is reported. Our calculations show that the symmetry breaking at the step leads to an easy magnetization axis at an odd angle of ∼20∘\sim20^{\circ} {\em towards} the Pt step, in agreement with experiment [P. Gambardella {\em et al.}, {\em Nature} {\bf 416}, 301 (2002)]. Also, the Co spin and orbital moments become noncollinear, even in the case of a collinear ferromagnetic spin arrangement. A significant enhancement of the Co orbital magnetic moment is achieved when modest electron correlations are treated within LSDA+UU calculations.Comment: Presented at MRS Meeting in Boston, Dec. 2003; 4 pages including 3 figure

    Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets

    Get PDF
    We report a computational theoretical investigation of electron spin-flip scattering induced by the electron-phonon interaction in the transition-metal ferromagnets bcc Fe, fcc Co and fcc Ni. The Elliott-Yafet electron-phonon spin-flip scattering is computed from first-principles, employing a generalized spin-flip Eliashberg function as well as ab initio computed phonon dispersions. Aiming at investigating the amount of electron-phonon mediated demagnetization in femtosecond laser-excited ferromagnets, the formalism is extended to treat laser-created thermalized as well as nonequilibrium, nonthermal hot electron distributions. Using the developed formalism we compute the phonon-induced spin lifetimes of hot electrons in Fe, Co, and Ni. The electron-phonon mediated demagnetization rate is evaluated for laser-created thermalized and nonequilibrium electron distributions. Nonthermal distributions are found to lead to a stronger demagnetization rate than hot, thermalized distributions, yet their demagnetizing effect is not enough to explain the experimentally observed demagnetization occurring in the subpicosecond regime.Comment: 14 pages, 8 figures, to appear in PR

    Dynamical mean field theory of correlated gap formation in Pu monochalcogenides

    Full text link
    The correlated Kondo insulator state of the plutonium monochalcogenides is investigated using the dynamical mean field theory (DMFT) and the local density approximation +U (LDA+U). The DMFT-dynamical fluctuations lead to a correlated insulator state at elevated temperature, in sharp contrast to the static LDA+U approach that fails to reproduce both the insulating behavior and anomalous lattice constant. The DMFT conversely predicts the experimentally observed anomalous increase of the gap with pressure and explains the lattice constant very well.Comment: 4 pages, 4 figure

    Ab initio investigation of Elliott-Yafet electron-phonon mechanism in laser-induced ultrafast demagnetization

    Full text link
    The spin-flip (SF) Eliashberg function is calculated from first-principles for ferromagnetic Ni to accurately establish the contribution of Elliott-Yafet electron-phonon SF scattering to Ni's femtosecond laser-driven demagnetization. This is used to compute the SF probability and demagnetization rate for laser-created thermalized as well as non-equilibrium electron distributions. Increased SF probabilities are found for thermalized electrons, but the induced demagnetization rate is extremely small. A larger demagnetization rate is obtained for {non-equilibrium} electron distributions, but its contribution is too small to account for femtosecond demagnetization.Comment: 5 pages, 3 figures, to appear in PR

    Theoretical de Haas-van Alphen Data and Plasma Frequencies of MgB2 and TaB2

    Full text link
    The de Haas-van Alphen-frequencies as well as the effective masses for a magnetic field parallel to the crystallographic c-axis are calculated within the local spin density approximation (LSDA) for MgB2 and TaB2. In addition, we analyze the plasma frequencies computed for each Fermi surface sheet. We find a large anisotropy of Fermi velocities in MgB2 in difference to the nearly isotropic behavior in TaB2. We compare calculations performed within the relativistic non-full potential augmented-spherical-wave (ASW) scheme and the scalar-relativistic full potential local orbital (FPLO) scheme. A significant dependence for small cross sections on the bandstructure method is found. The comparison with the first available experimental de Haas-van Alphen-data by Yelland et al. (Ref. 19) shows deviations from the electronic structure calculated within both L(S)DA approaches although the cross section predicted by FPLO are closer to the experimental data. The elucidation of the relevant many-body effects beyond the standard LDA is considered as a possible key problem to understand the superconductivity in MgB2.Comment: Typos corrected, 3references added. Extended and corrected version of S. Elgazzar et al., Solid State Comm. v. 121, 99 (2002). 7pages, 4figures, AIP Conference Proc. "Correlated Electron Systems and High-Tc Superconductors" (ed. F. Mancini) (October 2001, Salerno, Italy

    Evolution of multi-gap superconductivity in the atomically thin limit: Strain-enhanced three-gap superconductivity in monolayer MgB2_2

    Full text link
    Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2_2 at its ultrathin limit. Atomically thin MgB2_2 is distinctly different from bulk MgB2_2 in that surface states become comparable in electronic density to the bulk-like σ\sigma- and π\pi-bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we show that monolayer MgB2_2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film, owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2_2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >>50 K under biaxial tensile strain of ∼\sim 4\%, which is an enhancement stronger than in any other graphene-related superconductor known to date.Comment: To appear in Phys. Re

    Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys

    Full text link
    A hierarchical multiscale approach to model the magnetization dynamics of ferromagnetic ran- dom alloys is presented. First-principles calculations of the Heisenberg exchange integrals are linked to atomistic spin models based upon the stochastic Landau-Lifshitz-Gilbert (LLG) equation to calculate temperature-dependent parameters (e.g., effective exchange interactions, damping param- eters). These parameters are subsequently used in the Landau-Lifshitz-Bloch (LLB) model for multi-sublattice magnets to calculate numerically and analytically the ultrafast demagnetization times. The developed multiscale method is applied here to FeNi (permalloy) as well as to copper- doped FeNi alloys. We find that after an ultrafast heat pulse the Ni sublattice demagnetizes faster than the Fe sublattice for the here-studied FeNi-based alloys
    • …
    corecore