6,379 research outputs found

    Rural soldiers continue to account for disproportionately high share of U.S. casualties in Iraq and Afghanistan

    Get PDF
    When the nation goes to war, all Americans are expected to make sacrifices. Today\u27s rural Americans, however, have fewer job opportunities within their communities, and are joining the military at higher rates. In turn, rural communities are facing military losses in disproportionate numbers to their urban counterparts

    U.S. rural soldiers account for a disproportionately high share of casualties in Iraq and Afghanistan

    Get PDF
    A study by the Carsey Institute found that among U.S. soldiers serving in Iraq and Afghanistan, those who are from rural America are dying at a higher rate than those soldiers who are from cities and suburbs. According to U.S. Department of Defense records, rural youth enlist in the military at a higher rate than urban and suburban youth and in all but eight states, soldiers from rural areas make up a disproportionately high share of the casualties

    Frustrated spin-12\frac{1}{2} Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1J_{1}--J2J_{2}--J1J_{1}^{\perp} model

    Full text link
    The zero-temperature phase diagram of the spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1J_{1}^{\perp} model on an AAAA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders. Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1>0J_{1}>0 and J2κJ1>0J_{2} \equiv \kappa J_{1}>0, respectively, are included in each layer. The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1δJ1J_{1}^{\perp} \equiv \delta J_{1}. The magnetic order parameter MM (viz., the sublattice magnetization) is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the N\'{e}el or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ0\delta 0) to one another. Calculations are performed at nnth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked cluster theorem and the Hellmann-Feynman theorem, with n10n \leq 10. The sole approximation made is to extrapolate such sequences of nnth-order results for MM to the exact limit, nn \to \infty. By thus locating the points where MM vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ\kappa--δ\delta half-plane with κ>0\kappa > 0. In particular, we provide the accurate estimate, (κ0.547,δ0.45\kappa \approx 0.547,\delta \approx -0.45), for the position of the quantum triple point (QTP) in the region δ<0\delta < 0. We also show that there is no counterpart of such a QTP in the region δ>0\delta > 0, where the two quasiclassical phase boundaries show instead an ``avoided crossing'' behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    Get PDF
    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported

    Frustrated Heisenberg antiferromagnet on the honeycomb lattice: Spin gap and low-energy parameters

    Full text link
    We use the coupled cluster method implemented to high orders of approximation to investigate the frustrated spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J3J_{3} antiferromagnet on the honeycomb lattice with isotropic Heisenberg interactions of strength J1>0J_{1} > 0 between nearest-neighbor pairs, J2>0J_{2}>0 between next-nearest-neighbor pairs, and J3>0J_{3}>0 between next-next-neareast-neighbor pairs of spins. In particular, we study both the ground-state (GS) and lowest-lying triplet excited-state properties in the case J3=J2κJ1J_{3}=J_{2} \equiv \kappa J_{1}, in the window 0κ10 \leq \kappa \leq 1 of the frustration parameter, which includes the (tricritical) point of maximum classical frustration at κcl=12\kappa_{{\rm cl}} = \frac{1}{2}. We present GS results for the spin stiffness, ρs\rho_{s}, and the zero-field uniform magnetic susceptibility, χ\chi, which complement our earlier results for the GS energy per spin, E/NE/N, and staggered magnetization, MM, to yield a complete set of accurate low-energy parameters for the model. Our results all point towards a phase diagram containing two quasiclassical antiferromagnetic phases, one with N\'eel order for κ<κc1\kappa < \kappa_{c_{1}}, and the other with collinear striped order for κ>κc2\kappa > \kappa_{c_{2}}. The results for both χ\chi and the spin gap Δ\Delta provide compelling evidence for a quantum paramagnetic phase that is gapped over a considerable portion of the intermediate region κc1<κ<κc2\kappa_{c_{1}} < \kappa < \kappa_{c_{2}}, especially close to the two quantum critical points at κc1\kappa_{c_{1}} and κc2\kappa_{c_{2}}. Each of our fully independent sets of results for the low-energy parameters is consistent with the values κc1=0.45±0.02\kappa_{c_{1}} = 0.45 \pm 0.02 and κc2=0.60±0.02\kappa_{c_{2}} = 0.60 \pm 0.02, and with the transition at κc1\kappa_{c_{1}} being of continuous (and probably of the deconfined) type and that at κc2\kappa_{c_{2}} being of first-order type

    NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 31: The information-seeking behavior of engineers

    Get PDF
    Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information

    NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    Get PDF
    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion
    corecore