144 research outputs found
Kondo effect and channel mixing in oscillating molecules
We investigate the electronic transport through a molecule in the Kondo
regime. The tunneling between the electrode and the molecule is asymmetrically
modulated by the oscillations of the molecule, i.e., if the molecule gets
closer to one of the electrodes the tunneling to that electrode will increase
while for the other electrode it will decrease. The system is described by a
two-channel Anderson model with phonon-assisted hybridization, which is solved
with the Wilson numerical renormalization group method. The results for several
functional forms of tunneling modulation are presented. For a linearized
modulation the Kondo screening of the molecular spin is caused by the even or
odd conduction channel. At the critical value of the electron-phonon coupling
an unstable two-channel Kondo fixed point is found. For a realistic modulation
the spin at the molecular orbital is Kondo screened by the even conduction
channel even in the regime of strong coupling. A universal consequence of the
electron-phonon coupling is the softening of the phonon mode and the related
instability to perturbations that break the left-right symmetry. When the
frequency of oscillations decreases below the magnitude of such perturbation,
the molecule is abruptly attracted to one of the electrodes. In this regime,
the Kondo temperature is enhanced and, simultaneously, the conductance through
the molecule is suppressed.Comment: published versio
The Spin Mass of an Electron Liquid
We show that in order to calculate correctly the {\it spin current} carried
by a quasiparticle in an electron liquid one must use an effective "spin mass"
, that is larger than both the band mass, , which determines the
charge current, and the quasiparticle effective mass , which determines
the heat capacity. We present microscopic calculations of in a
paramagnetic electron liquid in three and two dimensions, showing that the mass
enhancement can be a very significant effect.Comment: 10 pages, 1 figur
Spin-Hall effect in a [110] quantum well
A self-consistent treatment of the spin-Hall effect requires consideration of
the spin-orbit coupling and electron-impurity scattering on equal footing. This
is done here for the experimentally relevant case of a [110] GaAs quantum well
[Sih {\it et al.}, Nature Physics 1, 31 (2005)]. Working within the framework
of the exact linear response formalism we calculate the spin-Hall conductivity
including the Dresselhaus linear and cubic terms in the band structure, as well
as the electron-impurity scattering and electron-electron interaction to all
orders. We show that the spin-Hall conductivity naturally separates into two
contributions, skew-scattering and side-jump, and we propose an experiment to
distinguish between them.Comment: The connection with the recent experiment on [110] quantum wells is
emphasize
Phase Coherence in a Driven Double-Well System
We analyze the dynamics of the molecular field incoherently pumped by the
photoassociation of fermionic atoms and coupled by quantum tunnelling in a
double-well potential. The relative phase distribution of the molecular modes
in each well and their phase coherence are shown to build up owing to quantum
mechanical fluctuations starting from the vacuum state. We identify three
qualitatively different steady-state phase distributions, depending on the
ratio of the molecule-molecule interaction strength to interwell tunnelling,
and examine the crossover from a phase-coherent regime to a phase-incoherent
regime as this ratio increases.Comment: 5 pages, 2 figure
and in the Deconfined Plasma from Lattice QCD
Analyzing correlation functions of charmonia at finite temperature () on
anisotropic lattices by the maximum entropy method (MEM),
we find that and survive as distinct resonances in the plasma
even up to and that they eventually dissociate between and ( is the critical temperature of deconfinement). This
suggests that the deconfined plasma is non-perturbative enough to hold
heavy-quark bound states. The importance of having sufficient number of
temporal data points in MEM analyses is also emphasized.Comment: 4 pages, 4 figures, REVTEX, version to appear in Physical Review
Letter
On-top fragmentation stabilizes atom-rich attractive Bose-Einstein condensates
It is well known that attractive condensates do not posses a stable ground
state in three dimensions. The widely used Gross-Pitaevskii theory predicts the
existence of metastable states up to some critical number
of atoms. It is demonstrated here that
fragmented metastable states exist for atom numbers well above
. The fragments are strongly overlapping in
space. The results are obtained and analyzed analytically as well as
numerically. The implications are discussed.Comment: 12 pages, 4 figure
Groundstates of SU(2)-Symmetric Confined Bose Gas: Trap for a Schr\"odinger Cat
Conservation of the total isotopic spin S of a two-component Bose gas-like
Rb-has a dramatic impact on the structure of the ground state. In the
case when S is much smaller than the total number of particles N, the
condensation of each of the two components occurs into two single-particle
modes. The quantum wavefunction of such a groundstate is a Schr\"odinger Cat-a
superposition of the phase separated classical condensates, the most "probable"
state in the superposition corresponding to the classical groundstate in the
sector of given N and S. After measurement of the spatial distribution of the
densities of the two components, the Cat collapses into one of the classical
condensate states.Comment: 5 RevTex pages, no figures; replaced with revised version, where the
discussion on stability against temporal white noise and losses is adde
Anyonic Excitations in Fast Rotating Bose Gases Revisited
The role of anyonic excitations in fast rotating harmonically trapped Bose
gases in a fractional Quantum Hall state is examined. Standard Chern-Simons
anyons as well as "non standard" anyons obtained from a statistical interaction
having Maxwell-Chern-Simons dynamics and suitable non minimal coupling to
matter are considered. Their respective ability to stabilize attractive Bose
gases under fast rotation in the thermodynamical limit is studied. Stability
can be obtained for standard anyons while for non standard anyons, stability
requires that the range of the corresponding statistical interaction does not
exceed the typical wavelenght of the atoms.Comment: 5 pages. Improved version to be published in Phys. Rev. A, including
a physical discussion on relevant interactions and scattering regime together
with implication on the nature of statistical interactio
Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas
We develop the microscopic theory of the extrinsic spin Hall conductivity of
a two-dimensional electron gas, including skew-scattering, side-jump, and
Coulomb interaction effects. We find that while the spin-Hall conductivity
connected with the side-jump is independent of the strength of
electron-electron interactions, the skew-scattering term is reduced by the
spin-Coulomb drag, so the total spin current and the total spin-Hall
conductivity are reduced for typical experimental mobilities. Further, we
predict that in paramagnetic systems the spin-Coulomb drag reduces the spin
accumulations in two different ways: (i) directly through the reduction of the
skew-scattering contribution (ii) indirectly through the reduction of the spin
diffusion length. Explicit expressions for the various contributions to the
spin Hall conductivity are obtained using an exactly solvable model of the
skew-scattering.Comment: The Coulomb corrections to the spin-Hall conductivity and spin
accumulations to first order in strength of spin-orbit coupling and
electron-electron interactions are include
Effects of disorder on quantum fluctuations and superfluid density of a Bose-Einstein condensate in a two-dimensional optical lattice
We investigate a Bose-Einstein condensate trapped in a 2D optical lattice in
the presence of weak disorder within the framework of the Bogoliubov theory. In
particular, we analyze the combined effects of disorder and an optical lattice
on quantum fluctuations and superfluid density of the BEC system. Accordingly,
the analytical expressions of the ground state energy and quantum depletion of
the system are obtained. Our results show that the lattice still induces a
characteristic 3D to 1D crossover in the behavior of quantum fluctuations,
despite the presence of weak disorder. Furthermore, we use the linear response
theory to calculate the normal fluid density of the condensate induced by
disorder. Our results in the 3D regime show that the combined presence of
disorder and lattice induce a normal fluid density that asymptotically
approaches 4/3 of the corresponding condensate depletion. Conditions for
possible experimental realization of our scenario are also proposed.Comment: 8 pages, 0 figure. To appear in Physical Review
- …