73 research outputs found
Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology
It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells
Pipeline network features and leak detection by cross-correlation analysis of reflected waves
This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave
Boltzmann-Shannon Entropy: Generalization and Application
The paper deals with the generalization of both Boltzmann entropy and
distribution in the light of most-probable interpretation of statistical
equilibrium. The statistical analysis of the generalized entropy and
distribution leads to some new interesting results of significant physical
importance.Comment: 5 pages, Accepted in Mod.Phys.Lett.
Mobility Edge in Aperiodic Kronig-Penney Potentials with Correlated Disorder: Perturbative Approach
It is shown that a non-periodic Kronig-Penney model exhibits mobility edges
if the positions of the scatterers are correlated at long distances. An
analytical expression for the energy-dependent localization length is derived
for weak disorder in terms of the real-space correlators defining the
structural disorder in these systems. We also present an algorithm to construct
a non-periodic but correlated sequence exhibiting desired mobility edges. This
result could be used to construct window filters in electronic, acoustic, or
photonic non-periodic structures.Comment: RevTex, 4 pages including 2 Postscript figure
Mind the Gap: Transitions Between Concepts of Information in Varied Domains
The concept of 'information' in five different realms – technological, physical, biological, social and philosophical – is briefly examined. The 'gaps' between these conceptions are dis‐ cussed, and unifying frameworks of diverse nature, including those of Shannon/Wiener, Landauer, Stonier, Bates and Floridi, are examined. The value of attempting to bridge the gaps, while avoiding shallow analogies, is explained. With information physics gaining general acceptance, and biology gaining the status of an information science, it seems rational to look for links, relationships, analogies and even helpful metaphors between them and the library/information sciences. Prospects for doing so, involving concepts of complexity and emergence, are suggested
- …