251 research outputs found

    The influence of porosity on machinability of sintered fe foam elements

    Get PDF
    The aim of the experiment was to study the machinability of porous metal foams formed by reduction of metal oxides during sintering. The analysis focused on the machining process of metal foams with respect to their porosity and mechanical properties. The factors investigated included the geometry of the specimens, the surface condition depending on the machining parameters (milling) and the porosity of the metal foam. The metallic porous structure was obtained as a result of sintering the mixture of iron based powders ASC 100.29 and DISTALOY SE (DIST SE) with porosity from 67,9 % (SE 1) to 77,8 % (SE 2) for ASC base powder and 75,7 % to 80.3 % for DISTALOY SE were used

    Scaling Law in Carbon Nanotube Electromechanical Devices

    Full text link
    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let

    Theoretical Simulations of 0.25 Monolayer Iodine Adsorption on Cu(100)

    Get PDF
    Simulations of adsorption 0.25 monolayer of iodine on Cu(100) were performed using a local-orbital minimal basis technique based on density functional theory and compared with plane-wave basis results. It was found that iodine adsorption changes the spacings between surface layers of copper substrate and can cause the reconstruction of this surface to rhombus-like arrangement with a stable threefold hollow adsorption site. The calculated structure of I/Cu(100) is presented together with the simulated scanning tunneling microscopy images of this surface. The obtained results are discussed in comparison with experimental results

    Determination of the Intershell Conductance in Multiwalled Carbon Nanotubes

    Full text link
    We report on the intershell electron transport in multiwalled carbon nanotubes (MWNT). To do this, local and nonlocal four-point measurements are used to study the current path through the different shells of a MWNT. For short electrode separations \lesssim 1 μ\mum the current mainly flows through the two outer shells, described by a resistive transmission line with an intershell conductance per length of ~(10 k\Omega)^{-1}/μ\mum. The intershell transport is tunnel-type and the transmission is consistent with the estimate based on the overlap between π\pi-orbitals of neighboring shells.Comment: 5 pages, 4 figure

    Geometrical Dependence of High-Bias Current in Multiwalled Carbon Nanotubes

    Full text link
    We have studied the high-bias transport properties of the different shells that constitute a multiwalled carbon nanotube. The current is shown to be reduced as the shell diameter is decreased or the length is increased. We assign this geometrical dependence to the competition between electron-phonon scattering process and Zener tunneling.Comment: 4 pages, 4 figure

    Hubungan Self Efficacy dengan Tingkat Depresi Perawat Onkologi selama Pandemi Covid 19

    Get PDF
    Penyakit Coronavirus disease 2019 (Covid-19) memberikan efek piskologis pada dunia  tenaga kesehatan, khususnya perawat. Berdasarkan beberapa penelitian efek psikologis yang dirasakan adalah depresi.  Perawat onkologi sendiri sebelumnya sudah dibekali terkait dengan SOP Protokol kesehatan tenaga kesehatan di Rumah Sakit selama Pandemi, namun jika secara psikologis para perawat onkologi merasa tertekan,maka perlu diteliti kembali terkait Tujuan dari penelitian ini adalah untuk mengetahui hubungan Self Efficacy dengan tingkat Depresi Perawat Onkologi selama Pandemi COVID 19. Penelitian ini merupakan penelitian  Non Experimental dengan , dimana uji menggunakan pendekatan cross sectional. Populasi yang digunakan adalah perawat onkologi yang bekerja di RS St. Elisabeth Tengah berjumlah 14 orang. Teknik pengambilan sampsel menggunakan teknik Total Sampling. Instrument yang digunakan dalam penelitian ini yaitu kuesioner HDRS dan GSES. Kuesioner HDRS sudah teruji reliabilitas pada tahun 2012 oleh Azim dan nilai r tabel 0,60 sudah reliabel karena dengan ketentuan bila alpha lebih besar dari pada r tabel (0,60). Pada kuesioner GSES uji reliabilitas terhadap item skala self-efficacy diperoleh koefisien reliabilitas sebesar 0,809. Dan uji validitas menunjukan t-value > 1.96.Berdasarkan hasil uji Gamma Test, ditemukan hasil p value adala 0,20 dimana jika p value kurang dari 0,05 maka dapat disimpulkan terdapat hubungan anatar kedua variebal dengan nilai korelasi berdasarkan hasil tabulasi SPSS, adalah -2,335 dengan pengertian bahwa terdapat korelasi yang bertolak belakang dan memiliki hubungan yang lemah. Korelasi yang bertolak belakang memiliki makna semakin tinggi tingkat self efficacy maka semakin rendah tingkat depresi, dan semakin rendah self efficacy maka semakin tinggi tingkat depresi

    Recent Sediments of Makirina Cove (Northern Dalmatia, Croatia): Their Origin Viewed Through a Multidisciplinary Approach

    Get PDF
    Makirina Cove was formed by the Holocene sea-level rise which caused a marine ingression into the depression formed within Albian–Cenomanian dolomites at approximately 4.5 ka B.P. At present, Makirina Cove represents an restricted, stressed, shallow-marine (<2m) ecosystem characterized by varying seawater temperatures (0–35°C) as well as fluctuating salinities (up to 41‰) affected by seasonally enhanced evaporation, continuous freshwater supply through on-shore and submarine springs associated with the coastal karst area and surface run-off episodes. These environmental conditions have been conducive to high primary production of organic matter resulting in the formation of organic-rich deposits which contain up to 5 wt.% of organic carbon. Up to the present times, 3.5 m of sediments have been deposited indicating a relatively high sedimentation rate estimated at 0.75 m/1.0 ka in the northern central part of the Cove. The sediments are being deposited mostly as poorly sorted clayey–sandy silts. The distribution and concentration of most of the chemical elements is dependant on the mineralogical composition and granulometric features of the Makirina sediments, which show values more or less similar to those from the Central Adriatic. Accordingly, there is a positive correlation with Al and K concentrations increasing off-shore and with the depth being associated with increasing concentrations of clay minerals within the clay fraction. The same holds true for concentrations of some trace elements, especially Mo and Se which is consistent with the distribution pattern of sulphides. Selenium is preferentially enriched in authigenic pyrite and it is probably the major source of Se in the Makirina Cove sediments. The concentrations of Ca, Mg and Sr decrease off-shore and they are linked to the composition of the surrounding carbonate rocks. The saturation indices show that the water is supersaturated with respect to carbonates enabling the precipitation of authigenic amorphous or crystalline carbonate phases from the pore water in the upper segment of the sediment column. According to the oxygen isotopic (δ18O) composition, molluscs precipitated their carbonate shells mostly during warmer periods (May to November) at or near isotopic equilibrium with their ambient waters. The carbon isotopic δ13C composition of mollusc carbonate shells is environmentally affected due to oxidation and decomposition of organic matter as well as influxes of fresh water into the Cove, indicating their formation out of the predicted isotopic equilibrium with atmospheric CO2. Palynological and organic carbon isotopic (δ13C) composition shows that the sedimentary organic matter (SOM) is 70–90% lipid- and hydrogen-rich and on average 2/3 marine derived (mainly phytoplankton, bacteria and marine macrophytes) and 1/3 terrestrially derived (mainly woody tissue). The variations in composition of SOM have been noted as a function of the distance from the shore. The type and the preservation state of SOM and pyrite as well as the measurements of Eh, pH, total alkalinity, dissolved inorganic carbon (DIC) and the enrichment of redox-sensitive trace elements, indicate oxygen-depleted depositional conditions and that the sediment is highly reductive even in the uppermost segment at the sediment/water interface. According to the results obtained from the applied methods, the features of Makirina sediments strongly reflect the given depositional conditions within this restricted, stressed, shallow-marine environment where these organic-rich sediments originate, and may therefore serve as a calibration standard in further investigations

    Recent Sediments of Makirina Cove (Northern Dalmatia, Croatia): Their Origin Viewed Through a Multidisciplinary Approach

    Get PDF
    Makirina Cove was formed by the Holocene sea-level rise which caused a marine ingression into the depression formed within Albian–Cenomanian dolomites at approximately 4.5 ka B.P. At present, Makirina Cove represents an restricted, stressed, shallow-marine (<2m) ecosystem characterized by varying seawater temperatures (0–35°C) as well as fluctuating salinities (up to 41‰) affected by seasonally enhanced evaporation, continuous freshwater supply through on-shore and submarine springs associated with the coastal karst area and surface run-off episodes. These environmental conditions have been conducive to high primary production of organic matter resulting in the formation of organic-rich deposits which contain up to 5 wt.% of organic carbon. Up to the present times, 3.5 m of sediments have been deposited indicating a relatively high sedimentation rate estimated at 0.75 m/1.0 ka in the northern central part of the Cove. The sediments are being deposited mostly as poorly sorted clayey–sandy silts. The distribution and concentration of most of the chemical elements is dependant on the mineralogical composition and granulometric features of the Makirina sediments, which show values more or less similar to those from the Central Adriatic. Accordingly, there is a positive correlation with Al and K concentrations increasing off-shore and with the depth being associated with increasing concentrations of clay minerals within the clay fraction. The same holds true for concentrations of some trace elements, especially Mo and Se which is consistent with the distribution pattern of sulphides. Selenium is preferentially enriched in authigenic pyrite and it is probably the major source of Se in the Makirina Cove sediments. The concentrations of Ca, Mg and Sr decrease off-shore and they are linked to the composition of the surrounding carbonate rocks. The saturation indices show that the water is supersaturated with respect to carbonates enabling the precipitation of authigenic amorphous or crystalline carbonate phases from the pore water in the upper segment of the sediment column. According to the oxygen isotopic (δ18O) composition, molluscs precipitated their carbonate shells mostly during warmer periods (May to November) at or near isotopic equilibrium with their ambient waters. The carbon isotopic δ13C composition of mollusc carbonate shells is environmentally affected due to oxidation and decomposition of organic matter as well as influxes of fresh water into the Cove, indicating their formation out of the predicted isotopic equilibrium with atmospheric CO2. Palynological and organic carbon isotopic (δ13C) composition shows that the sedimentary organic matter (SOM) is 70–90% lipid- and hydrogen-rich and on average 2/3 marine derived (mainly phytoplankton, bacteria and marine macrophytes) and 1/3 terrestrially derived (mainly woody tissue). The variations in composition of SOM have been noted as a function of the distance from the shore. The type and the preservation state of SOM and pyrite as well as the measurements of Eh, pH, total alkalinity, dissolved inorganic carbon (DIC) and the enrichment of redox-sensitive trace elements, indicate oxygen-depleted depositional conditions and that the sediment is highly reductive even in the uppermost segment at the sediment/water interface. According to the results obtained from the applied methods, the features of Makirina sediments strongly reflect the given depositional conditions within this restricted, stressed, shallow-marine environment where these organic-rich sediments originate, and may therefore serve as a calibration standard in further investigations

    Application of the Thermal Flash Technique for Low Thermal Diffusivity Micro/Nanofibers

    Get PDF
    The thermal flash method was developed to characterize the thermal diffusivity of micro/nanofibers without concern for thermal contact resistance, which is commonly a barrier to accurate thermal measurement of these materials. Within a scanning electron microscope, a micromanipulator supplies instantaneous heating to the micro/nanofiber, and the resulting transient thermal response is detected at a microfabricated silicon sensor. These data are used to determine thermal diffusivity. Glass fibers of diameter 15 mu m had a measured diffusivity of 1.21x10(-7) m(2)/s; polyimide fibers of diameters 570 and 271 nm exhibited diffusivities of 5.97x10(-8) and 6.28x10(-8) m(2)/s, respectively, which compare favorably with bulk values

    Dual Band Deep Ultraviolet AlGaN Photodetectors

    Get PDF
    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation
    corecore