149 research outputs found

    Fabrication and analysis of mechanical properties of PVC/Glass fiber/graphene nano composite pipes

    Get PDF
    The aim of this work is to examine the conventional moulding method for manufacturing the PVC/Glass fiber/graphene nano composites. Uniform graphene dispersion is observed with the matrix for better bonding. The Mechanical properties of the manufactured nano composites have been done in this work. Three important standard tests were evaluated for the performance of Nano-Composites developed. The composites were developed as flat specimen for pipe applications. The three standards test which includes axial tension, compression and transverse compression is studied. The graphene nano composites were varied 0.5%, 1%, 1.5% and 2 percentages. Based on the results it can be concluded that the increase in the percentages of graphene made a uniform dispersion, which leads to increase in the compressive strength of the Nanocomposite. Increase in the axial compressive strength and stiffness was observed and the increase in the trend value is mainly observed in 1.5 wt% and 2 wt% respectively. The Graphene dispersion and fractured surface morphology of nano composites were examined using scanning electronic microscopy (SEM).It can also be used as an alternative for metal pipes in industries

    Meta-heuristically seeded genetic algorithm for independent job scheduling in grid computing

    Get PDF
    Grid computing is an infrastructure which connects geographically distributed computers owned by various organizations allowing their resources, such as computational power and storage capabilities, to be shared, selected, and aggregated. Job scheduling problem is one of the most difficult tasks in grid computing systems. To solve this problem efficiently, new methods are required. In this paper, a seeded genetic algorithm is proposed which uses a meta-heuristic algorithm to generate its initial population. To evaluate the performance of the proposed method in terms of minimizing the makespan, the Expected Time to Compute (ETC) simulation model is used to carry out a number of experiments. The results show that the proposed algorithm performs better than other selected techniques

    Epigenetic assays for chemical biology and drug discovery

    Full text link

    Socio-Demographic Factors and Citizens’ Perception of E-Government

    Full text link

    Influence of various sintering parameters and the temperature dependent scaling on the dynamic hysteresis behavior of Ba<sub>0.9</sub>Ca<sub>0.05</sub>Sr<sub>0.05</sub>T<sub>0.85</sub>Zr<sub>0.15</sub>O<sub>3</sub> ceramics

    Full text link
    PurposeThe article explores the effect of sintering temperature on the ferroelectric hysteresis behavior of the synthesized ceramic material Ba0.9Ca0.05Sr0.05T0.85Zr0.15O3 (BCSTZO). It describes how the sintering temperature and its holding time have effect on the polarization-electric field (P-E) loops which is an important characteristic of a ferroelectric material. From the P-E loops obtained, various representative parameters like remnant polarization and coercive field values were extracted and scaling results were systematically established using them.Design/methodology/approachThe present article describes the establishment of scaling relations for coercive field (Ec), remnant polarization (Pr) and back switching polarization (Pbc) as a function of temperature which have been obtained from P-E loops sintered at various temperature and time. This is because sintering temperature plays a pivotal role in determining the hysteresis parameters.FindingsThe temperature dependent scaling of Ec and Pr at sintering temperature of 1400, 1425, 1450 and 1475 °C yields EcαT0.40, EcαT0.80, EcαT0.47, EcαT0.29 and PrαT−1.72, PrαT−1.55, PrαT−1.72, PrαT−1.69 respectively. Further the scaling relations for the samples sintered at 1450 °C at different time interval of 3, 4, 5 and 6 h was also established to bring the effect of sintering in switching the ferroelectric hysteresis parameters.Originality/valueThe findings of this work will prove beneficial for the researchers working in optimization of sintering parameters and will benefit researchers selecting best material among the fabricated samples for further property enhancement. The optimized sample could be explored for multifunctional applications ranging from pyroelectric voltage to piezoelectric energy harvesting. In addition to this, the scaling results help to understand the nature of ferroelectric parameters with sintering. This may open up new avenues for studying the scaling behavior of dynamic hysteresis in synthesized material by focusing on hysteresis area as a function of applied electric fields, frequency and temperature. This reason owes to the fact that electric field and frequency are important parameters for a number of applications like sensor, transducers and medical applications.</jats:sec
    corecore