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Abstract
This paper is concerned with fuzzy bidirectional associative memory (BAM)
Cohen-Grossberg neural networks with mixed delays and impulses. By constructing
an appropriate Lyapunov function and a new differential inequality, we obtain some
sufficient conditions which ensure the existence and global exponential stability of a
periodic solution of the model. The results in this paper extend and complement the
previous publications. An example is given to illustrate the effectiveness of our
obtained results.
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1 Introduction
In recent years, considerable attention has been paid to bidirectional associative memory
(BAM) Cohen-Grossberg neural networks [] due to their potential applications in var-
ious fields such as neural biology, pattern recognition, classification of patterns, parallel
computation and so on [–]. In real life, numerous application examples appear, for ex-
ample, emerging parallel/distributed architectures were explored for the digital VLSI im-
plementation of adaptive bidirectional associative memory (BAM) [], Teddy and Ng []
applied a novel local learning model of the pseudo self-evolving cerebellar model articu-
lation controller (PSECMAC) associative memory network to produce accurate forecasts
of ATM cash demands. Chang et al. [] proposed a maximum-likelihood-criterion based
on BAM networks to evaluate the similarity between a template and a matching region.
Sudo et al. [] proposed a novel associative memory that operated in noisy environments
and performed well in online incremental learning applying self-organizing incremental
neural networks. On the one hand, the existence and stability of the equilibrium point of
BAM Cohen-Grossberg neural networks plays an important role in practical application.
On the other hand, time delay is inevitable due to the finite switching speed of amplifiers
in the electronic implementation of analog neural networks, moreover, time delays may
have important effect on the stability of neural networks and lead to periodic oscillation,
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bifurcation, chaos and so on [, , ]. Thus many interesting stability results on BAM
Cohen-Grossberg neural networks with delays have been available [–].

As is well known, numerous dynamical systems of electronic networks, biological neu-
ral networks, and engineering fields often undergo abrupt change at certain moments due
to instantaneous perturbations which leads to impulsive effects [, , , –]. Many
scholars [, ] think that uncertainty or vagueness often appear in mathematical model-
ing of real world problems, thus it is necessary to take vagueness into consideration. Fuzzy
neural networks (FNNs) pay an important role in image processing and pattern recogni-
tion [] and some results have been reported on stability and periodicity of FNNs [, –
]. Here we would like to point out that most neural networks involve negative feedback
terms and do not possess amplification functions or behaved functions. The model (.)
of this paper has amplifications function and behaved functions which differ from most
neural networks with negative feedback term. Up to now, there are rare papers that con-
sider exponential stability of this kind of fuzzy bidirectional associative memory Cohen-
Grossberg neural networks with mixed delays and impulses.

Inspired by the discussion above, in this paper, we are to consider the following fuzzy
bidirectional associative memory Cohen-Grossberg neural networks with mixed delays
and impulses,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = ιi(xi(t))[–ai(t, xi(t)) +
∑m

j= cji(t)fj(yj(t – τ (t)))
+
∧m

j= αji(t)
∫ t

–∞ Kji(t – s)fj(yj(s)) ds +
∧m

j= Tjiuj +
∨m

j= Hjiuj

+
∨m

j= βji(t)
∫ t

–∞ Kji(t – s)fj(yj(s)) ds + Ii(t)], t �= tk , i ∈ �,
�xi(tk) = xi(tk) – xi(t–

k ) = –γikxi(t–
k ) +

∑m
j= eij(t–

k )Ej(yj(t–
k – τ )), k ∈ Z+,

ẏj(t) = ϑj(yj(t))[–bj(t, yj(t)) +
∑n

i= dij(t)gi(xi(t – τ (t)))
+
∧n

i= pij(t)
∫ t

–∞ Nij(t – s)gi(xi(s)) ds +
∧n

i= Sijui +
∨n

i= Lijui

+
∨n

i= qij(t)
∫ t

–∞ Nij(t – s)gi(xi(s)) ds + Jj(t)], t �= tk , j ∈ �,
�yj(tk) = yj(tk) – yj(t–

k ) = –δjkyi(t–
k ) +

∑n
i= hji(t–

k )Hi(xi(t–
k – τ )), k ∈ Z+,

(.)

with initial conditions

{
xi(s) = φi(s), s ∈ (–∞, ], i ∈ �,
yj(s) = φi(s), s ∈ (–∞, ], j ∈ �,

(.)

where n and m correspond to the number of neurons in X-layer and Y -layer, respectively.
xi(t) and yj(t) are the activations of the ith neuron and the jth neurons, respectively. ιi(·)
and ϑj(·) are the abstract amplification functions, ai(t, ·) and bj(t, ·) stand for the rate func-
tions with which the ith neuron and jth neuron will reset its potential to the resting state
in isolation when disconnected from the network and external inputs; αji(t), βji(t), Tji

and Hji are elements of fuzzy feedback MIN template and fuzzy feedback MAX template,
fuzzy feed-forward MIN template and fuzzy feed-forward MAX template in X-layer, re-
spectively; pij(t), qij(t), Sij and Lij are elements of fuzzy feedback MIN template and fuzzy
feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward MAX
template in Y -layer, respectively;

∧
and

∨
denote the fuzzy AND and fuzzy OR operation,

respectively; uj, ui denote external input of the ith neurons in X-layer and external input
of the jth neurons in Y -layer, respectively; Ii(t) and Jj(t) are external bias of X-layer and Y -
layer, respectively, fj(·) and gi(·) are signal transmission functions, Kji(t) and Nij(t) are delay
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kernels, � = {, , . . . , n}, � = {, , . . . , m}, Z+ denotes the set of positive integral numbers,
the impulse times tk satisfy  = t < t < t < · · · < tk < · · · , limk→∞ tk = ∞, φi(·),φj(·) ∈ C,
where C denotes real-valued continuous functions defined on (–∞, ], τ (t) is the trans-
mission delay such that  ≤ τ (t) ≤ τ , τ is a positive constant, eij(t–

k ) represents impulsive
perturbations of the ith unit at time tk , hji(t–

k ) represents impulsive perturbations of the jth
unit at time tk , Ej(yj(t–

k )) represents impulsive perturbations of the jth unit at time tk and
yj(t–

k ) denotes impulsive perturbations of the jth unit at time tk caused by the transmission
delays, Hi(xi(t–

k )) represents impulsive perturbations of the ith unit at time tk and xi(t–
k ) de-

notes impulsive perturbations of the ith unit at time tk which caused by the transmission
delays. For details, see [–].

The main purpose of this paper is to investigate the existence and global exponential sta-
bility of a periodic solution of fuzzy BAM Cohen-Grossberg neural networks with mixed
delays and impulses. By constructing a suitable Lyapunov function and a new differential
inequality, we establish some sufficient conditions to ensure the existence and global ex-
ponential stability of a periodic solution of the model (.). The results obtained in this
paper extend and complement the previous studies in [, ]. Two examples are given to
illustrate the effectiveness of our theoretical findings. To the best of our knowledge, there
are very few papers that deal with this aspect. Therefore we think that the study of the
fuzzy BAM Cohen-Grossberg neural networks with mixed delays and impulses has im-
portant theoretical and practical value. Here we shall mention that since the existence of
amplifications function and behaved functions in model (.), thus there are some diffi-
culties in dealing with the exponential stability. We will apply some inequality techniques,
meanwhile, the construction of Lyapunov function is a key issue.

The remaining part of this paper is organized as follows. In Section , the necessary
definitions and lemmas are introduced. In Section , we present some new sufficient con-
ditions to ensure the existence and global exponential stability of a periodic solution of
model (.). In Section , an illustrative example is given to show the effectiveness of the
proposed method. A brief conclusion is drawn in Section .

2 Preliminaries
Let R denote the set of real number, Rn the n-dimensional real space equipped with the
Euclidean norm | · |, R+ the set of positive numbers. Denote PC(R,R+) = {φ : R → R

n :
φ(t) is continuous for t �= tk ,φ(t+

k ),φ(t–
k ) ∈R

n and φ(t–
k ) = φ(tk)}.

Throughout this paper, we make the following assumptions:
(H) For i ∈ �, j ∈ �, cji(t), αji(t), βji(t), eij(t), dij(t), pij(t), qij(t), hji(t), τ (t), Ii(t) and Jj(t)

are all continuously periodic functions defined on t ∈ [,∞) with common period
ω > .

(H) For i ∈ �, j ∈ �, there exist positive constants Lf
j , LE

j , Lg
i and LH

j such that

∣
∣fj(u) – fj(v)

∣
∣ ≤ Lf

j |u – v|, ∣
∣Ej(u) – Ej(v)

∣
∣ ≤ LE

j |u – v|,
∣
∣gi(u) – gi(v)

∣
∣ ≤ Lg

i |u – v|, ∣
∣Hi(u) – Hi(v)

∣
∣ ≤ LH

j |u – v|

for all u, v ∈ R.
(H) For i ∈ �, j ∈ �, ιi(·) and ϑj(·) are continuous and satisfy  ≤ ιi ≤ ιi(·) ≤ ιi,

 ≤ ϑ j ≤ ϑj(·) ≤ ϑ j, where ιi, ιi, ϑ j, ϑ j are some positive constants.
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(H) For i ∈ �, j ∈ �, there exist continuous positive ω-periodic functions �i(t) and σj(t)
such that

ai(t, u) – ai(t, v)
u – v

≥ �i(t),
bj(t, u) – bj(t, v)

u – v
≥ σj(t)

for all u, v ∈ R.
(H) For i ∈ �, j ∈ �, the delay kernels Kij(·), Nji(·) ∈ C(R+,R+) are piecewise continuous

and satisfy Kij(s) ≤ K̃(s) and Nji(s) ≤ K̃(s) for all s ∈ R
+, where K̃(s) ∈ C(R+,R+)

and integrable, satisfying
∫ ∞

 K̃ (s)eμs ds < ∞, in which the constant μ denotes
some positive number.

(H) For i ∈ �, j ∈ �ω > , there exists q ∈ Z
+ such that tk + ω = tk+q and γik = γi(k+q),

δjk = δj(k+q), k ∈ Z
+.

(H) For i ∈ �, j ∈ �, c∗
ji = maxt∈[,ω] |cji(t)|, α∗

ji = maxt∈[,ω] |αji(t)|, β∗
ji = maxt∈[,ω] |βji(t)|,

e∗
ij = maxt∈[,ω] |eij(t)|, d∗

ij = maxt∈[,ω] |dij(t)|, p∗
ij = maxt∈[,ω] |pij(t)|,

q∗
ij = maxt∈[,ω] |qij(t)|, h∗

ji = maxt∈[,ω] |hji(t)|, ��
i = mint∈[,ω] |�i(t)|,

σ �
i = mint∈[,ω] |σj(t)|.

In this paper, we use the following norm of Rn+m:

‖u‖ =
n∑

i=

|xi| +
m∑

j=

|yj|, ‖φ‖ = sup
s∈(–∞,]

[ n∑

i=

∣
∣φi(s)

∣
∣ +

m∑

j=

∣
∣φj(s)

∣
∣

]

for u = (x, x, . . . , xn, y, y, . . . , ym)T ∈ R
n+m, φ = (φ,φ, . . . ,φn,φ,φ, . . . ,φm)T ∈C

n+m.

Lemma . ([]) Let x and y be two states of system (.). Then

∣
∣
∣
∣
∣

n∧

j=

αij(t)gj(x) –
n∧

j=

αij(t)gj(y)

∣
∣
∣
∣
∣
≤

n∑

j=

∣
∣αij(t)

∣
∣
∣
∣gj(x) – gj(y)

∣
∣

and
∣
∣
∣
∣
∣

n∨

j=

βij(t)gj(x) –
n∨

j=

βij(t)gj(y)

∣
∣
∣
∣
∣
≤

n∑

j=

∣
∣βij(t)

∣
∣
∣
∣gj(x) – gj(y)

∣
∣.

Lemma . ([]) Let p, q, r and τ denote nonnegative constants and f ∈ PC(R,R+) satisfies
the scalar impulsive differential inequality

{
D+f (t) ≤ –pf (t) + q supt–τ≤s≤t f (s) + r

∫ σ

 k(s)f (t – s) ds, t �= tk , t ≥ t,
f (tk) ≤ akf (t–

k ) + bkf (t–
k – τ ), k ∈ Z

+,
(.)

where  < σ ≤ +∞, ak , bk ∈ R, k(·) ∈ PC([,σ ],R+) satisfies
∫ σ

 k(s)eηs ds < ∞ for some
positive constant η >  in this case when σ = +∞. Moreover, when σ = +∞, the inter-
val [t – σ , t] is understood to be replaced by (–∞, t]. Assume that (i) p > q + r

∫ σ

 k(s) ds.
(ii) There exist constant M > , η >  such that

n∏

k=

max
{

, ak + bkeλτ
} ≤ Meη(tn–t), n ∈ Z+,
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where λ ∈ (,η) satisfies

λ < p – qeλτ – r
∫ σ


k(s)eλs ds.

Then

f (t) ≤ Mf (t)e–(λ–η)(t–t), t ≥ t,

where f (t) = supt–max{σ ,τ } f (s).

3 Global exponential stability of the periodic solution
In this section, we will discuss the global exponential stability of the periodic solution for
(.).

Theorem . Assume that (H)-(H) hold, then there exists a unique ω-periodic solution
of system (.) which is globally exponentially stable if the following conditions are fulfilled.

(H)

min{��
i ,σ �

j }mini∈�,j∈�{ιi,ϑ j}
maxi∈�,j∈�{ιi,ϑ j}

> max

{ n∑

i=

max
j∈�

c∗
jiL

f
j ,

m∑

j=

max
i∈�

d∗
ijL

g
i

}

+ max

{ n∑

i=

max
j∈�

α∗
jiL

f
j ,

n∑

i=

max
j∈�

β∗
jiL

f
j ,

m∑

j=

max
i∈�

p∗
ijL

g
i ,

m∑

j=

max
i∈�

q∗
ijL

g
i

}

×
∫ ∞


K̃(s) ds.

(H) There exist constants M ≥ , λ ∈ (,λ) and η ∈ (,λ) such that
∏n

l= max{,χl} ≤ Meηtn for all n ∈ Z+ holds and

λ <
min{��

i ,σ �
j }mini∈�,j∈�{ιi,ϑ j}

maxi∈�,j∈�{ιi,ϑ j}
– max

{ n∑

i=

max
j∈�

c∗
jiL

f
j ,

m∑

j=

max
i∈�

d∗
ijL

g
i

}

eλτ

– max

{ n∑

i=

max
j∈�

α∗
jiL

f
j ,

n∑

i=

max
j∈�

β∗
jiL

f
j ,

m∑

j=

max
i∈�

p∗
ijL

g
i ,

m∑

j=

max
i∈�

q∗
ijL

g
i

}

×
∫ ∞


K̃(s) ds,

where

χl =
maxi∈�,j∈�{ιi,ϑ j}
mini∈�,j∈�{ιi,ϑ j}

max
i∈�,j∈�

{

|–γil|, |–δjl|+max

{ n∑

i=

max
j∈�

e∗
ijL

E
j ,

m∑

j=

max
i∈�

h∗
jiL

H
i

}

eλτ

}

.

Proof Assume that u(t) = (x(t,φ), x(t,φ), . . . , xn(t,φ), y(t,φ), y(t,φ), . . . , ym(t,φ))T is
an arbitrary solution of system (.) through (t,φ,φ), where φ = (φ,φ, . . . ,φn)T ,
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φ = (φ,φ, . . . ,φm)T . Define

xi(t + ω,φ) = ϕi, t ≤ , i ∈ �, yj(t + ω,φ) = ϕj, t ≤ , j ∈ �,

then ϕ = (ϕ,ϕ, . . . ,ϕn)T ∈ C
n, ϕ = (ϕ,ϕ, . . . ,ϕm)T ∈C

m.
Now we construct the following Lyapunov function:

V (t) =
n∑

i=

∫ xi(t+ω)

xi(t)


ιi(s)

ds sgn
[
xi(t + ω) – xi(t)

]

+
m∑

j=

∫ yj(t+ω)

yj(t)


ϑj(s)

ds sgn
[
yj(t + ω) – yj(t)

]
. (.)

It is easy to see that

min
i∈�,j∈�

{

ιi

,

ϑ j

}( n∑

i=

∣
∣xi(t + ω) – xi(t)

∣
∣ +

m∑

j=

∣
∣yj(t + ω) – yj(t)

∣
∣

)

≤ V (t) ≤ max
i∈�,j∈�

{

ιi

,

ϑ j

}( n∑

i=

∣
∣xi(t + ω) – xi(t)

∣
∣ +

m∑

j=

∣
∣yj(t + ω) – yj(t)

∣
∣

)

. (.)

When t �= tk , calculating the derivative of D+V (t) along the solution of (.), we have

D+V (t) ≤
n∑

i=

[
D+xi(t + ω)
ιi(xi(t + ω))

–
D+xi(t)
ιi(xi(t))

]

sgn
[
xi(t + ω) – xi(t)

]

+
m∑

j=

[
D+yj(t + ω)
ϑj(yj(t + ω))

–
D+yj(t)
ϑj(yj(t))

]

sgn
[
yj(t + ω) – yj(t)

]

=
n∑

i=

[

–ai
(
t, xi(t + ω)

)
+ ai

(
t, xi(t)

)
+

m∑

j=

cji(t)fj
(
yj
(
t + ω – τ (t + ω)

))

–
m∑

j=

cji(t)fj
(
yj
(
t – τ (t)

))
+

m∧

j=

αji(t)
∫ t+ω

–∞
Kji(t + ω – s)fj

(
yj(s)

)
ds

–
m∧

j=

αji(t)
∫ t

–∞
Kji(t – s)fj

(
yj(s)

)
ds +

m∨

j=

βji(t)
∫ t+ω

–∞
Kji(t + ω – s)fj

(
yj(s)

)
ds

–
m∨

j=

βji(t)
∫ t

–∞
Kji(t – s)fj

(
yj(s)

)
ds

]

sgn
[
xi(t + ω) – xi(t)

]

+
m∑

j=

[

–bj
(
t, yj(t + ω)

)
+ bj

(
t, yj(t)

)
+

n∑

i=

dij(t)gi
(
xi
(
t + ω – τ (t + ω)

))

–
n∑

i=

dij(t)gi
(
xi
(
t – τ (t)

))
+

n∧

i=

pij(t)
∫ t+ω

–∞
Nij(t + ω – s)gi

(
xi(s)

)
ds

–
n∧

i=

pij(t)
∫ t

–∞
Nij(t – s)gi

(
xi(s)

)
ds +

n∨

i=

qij(t)
∫ t+ω

–∞
Nij(t + ω – s)gi

(
xi(s)

)
ds
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–
n∨

i=

qij(t)
∫ t+ω

–∞
Nij(t + ω – s)gi

(
xi(s)

)
ds

]

sgn
[
yj(t + ω) – yj(t)

]

≤ – min
i∈�

��
i

n∑

i=

∣
∣xi(t + ω) – xi(t)

∣
∣ +

n∑

i=

m∑

j=

c∗
jiL

f
j
∣
∣yj

(
t + ω – τ (t)

)
– yj

(
t – τ (t)

)∣
∣

+
n∑

i=

m∑

j=

α∗
jiL

f
j

∫ ∞


K̃(s)

∣
∣yj(t + ω – s) – yj(t – s)

∣
∣ds

+
n∑

i=

m∑

j=

β∗
jiL

f
j

∫ ∞


K̃ (s)

∣
∣yj(t + ω – s) – yj(t – s)

∣
∣ds

– min
j∈�

σ �
j

m∑

j=

∣
∣yj(t + ω) – yj(t)

∣
∣ +

m∑

j=

n∑

i=

d∗
ijL

g
i
∣
∣xi

(
t + ω – τ (t)

)
– xi

(
t – τ (t)

)∣
∣

+
m∑

j=

n∑

i=

p∗
ijL

g
i

∫ ∞


K̃(s)

∣
∣xi(t + ω – s) – xi(t – s)

∣
∣ds

+
m∑

j=

n∑

i=

q∗
ijL

g
i

∫ ∞


K̃(s)

∣
∣xi(t + ω – s) – xi(t – s)

∣
∣ds

≤ – min
{
��

i ,σ �
j
}
[ n∑

i=

(
xi(t + ω) – xi(t)

)
+

m∑

j=

(
yj(t + ω) – yj(t)

)
]

+
n∑

i=

max
j∈�

c∗
jiL

f
j

m∑

j=

∣
∣yj

(
t + ω – τ (t)

)
– yj

(
t – τ (t)

)∣
∣

+
n∑

i=

max
j∈�

α∗
jiL

f
j

∫ ∞


K̃ (s)

∣
∣yj(t + ω – s) – yj(t – s)

∣
∣ds

+
n∑

i=

max
j∈�

β∗
ji L

f
j

∫ ∞


K̃(s)

m∑

j=

∣
∣yj(t + ω – s) – yj(t – s)

∣
∣ds

+
m∑

j=

max
i∈�

d∗
ijL

g
i

n∑

i=

∣
∣xi

(
t + ω – τ (t)

)
– xi

(
t – τ (t)

)∣
∣

+
m∑

j=

max
i∈�

p∗
ijL

g
i

∫ ∞


K̃(s)

n∑

i=

∣
∣xi(t + ω – s) – xi(t – s)

∣
∣ds

+
m∑

j=

max
i∈�

q∗
ijL

g
i

∫ ∞


K̃(s)

n∑

i=

∣
∣xi(t + ω – s) – xi(t – s)

∣
∣ds

≤ – min
{
��

i ,σ �
j
}
[ n∑

i=

(
xi(t + ω) – xi(t)

)
+

m∑

j=

(
yj(t + ω) – yj(t)

)
]

+ max

{ n∑

i=

max
j∈�

c∗
jiL

f
j ,

m∑

j=

max
i∈�

d∗
ijL

g
i

}

×
[ n∑

i=

∣
∣xi

(
t + ω – τ (t)

)
– xi

(
t – τ (t)

)∣
∣ +

m∑

j=

∣
∣yj

(
t + ω – τ (t)

)
– yj

(
t – τ (t)

)∣
∣

]
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+ max

{ n∑

i=

max
j∈�

α∗
jiL

f
j ,

n∑

i=

max
j∈�

β∗
jiL

f
j ,

m∑

j=

max
i∈�

p∗
ijL

g
i ,

m∑

j=

max
i∈�

q∗
ijL

g
i

}

×
∫ ∞


K̃(s)

[ n∑

i=

∣
∣xi(t + ω – s) – xi(t – s)

∣
∣ +

m∑

j=

∣
∣yj(t + ω – s) – yj(t – s)

∣
∣

]

ds.

(.)

In view of (.), it follows from (.) that

D+V (t) ≤ – min
{
��

i ,σ �
j
}

min
i∈�,j∈�

{ιi,ϑ j}V (t)

+ max

{ n∑

i=

max
j∈�

c∗
jiL

f
j ,

m∑

j=

max
i∈�

d∗
ijL

g
i

}

max
i∈�,j∈�

{ιi,ϑ j}V
(
t – τ (t)

)

+ max

{ n∑

i=

max
j∈�

α∗
jiL

f
j ,

n∑

i=

max
j∈�

β∗
jiL

f
j ,

m∑

j=

max
i∈�

p∗
ijL

g
i ,

m∑

j=

max
i∈�

q∗
ijL

g
i

}

×
∫ ∞


K̃(s)V (t – s) ds. (.)

When t = tk , in view of (H), (H), and (.), we get

V (tk) ≤ max
i∈�,j∈�

{

ιi

,

ϑ j

}( n∑

i=

∣
∣xi(tk + ω) – xi(tk)

∣
∣ +

m∑

j=

∣
∣yj(tk + ω) – yj(tk)

∣
∣

)

= max
i∈�,j∈�

{

ιi

,

ϑ j

}( n∑

i=

∣
∣xi(tk+q) – xi(tk)

∣
∣ +

m∑

j=

∣
∣yj(tk+q) – yj(tk)

∣
∣

)

≤ max
i∈�,j∈�

{

ιi

,

ϑ j

}{ n∑

i=

| – γik|
∣
∣xi

(
t–
k+q

)
– xi

(
t–
k
)∣
∣

+
n∑

i=

m∑

j=

e∗
ijL

E
j
∣
∣yj

(
t–
k+q – τ

)
– yj

(
t–
k – τ

)∣
∣

+
m∑

j=

| – δjk|
∣
∣yj

(
t–
k+q

)
– yj

(
t–
k
)∣
∣ +

m∑

j=

n∑

i=

h∗
jiL

H
i
∣
∣xi

(
t–
k+q – τ

)
– xi

(
t–
k – τ

)∣
∣

}

≤ max
i∈�,j∈�

{

ιi

,

ϑ j

}{

max
i∈�

| – γik|
n∑

i=

∣
∣xi

(
t–
k + ω

)
– xi

(
t–
k
)∣
∣

+
n∑

i=

max
j∈�

e∗
ijL

E
j

m∑

j=

∣
∣yj

(
t–
k + ω – τ

)
– yj

(
t–
k – τ

)∣
∣

+ max
j∈�

| – δjk|
m∑

j=

∣
∣yj

(
t–
k + ω

)
– yj

(
t–
k
)∣
∣

+
n∑

i=

max
i∈�

h∗
jiL

H
i

m∑

j=

∣
∣xi

(
t–
k + ω – τ

)
– xi

(
t–
k – τ

)∣
∣

}

≤ max
i∈�,j∈�

{

ιi

,

ϑ j

}

max
i∈�,j∈�

{| – γik|, | – δjk|
}
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×
( n∑

i=

∣
∣xi

(
t–
k + ω

)
– xi

(
t–
k
)∣
∣ +

m∑

j=

∣
∣yj

(
t–
k + ω

)
– yj

(
t–
k
)∣
∣

)

+ max

{ n∑

i=

max
j∈�

e∗
ijL

E
j ,

n∑

i=

max
i∈�

h∗
jiL

H
i

}

×
( n∑

i=

∣
∣xi

(
t–
k + ω

)
– xi

(
t–
k
)∣
∣ +

m∑

j=

∣
∣yj

(
t–
k + ω

)
– yj

(
t–
k
)∣
∣

)

≤ maxi∈�,j∈�{ιi,ϑ j}
mini∈�,j∈�{ιi,ϑ j}

max
i∈�,j∈�

{| – γik|, | – δjk|
}

V
(
t–
k
)

+
maxi∈�,j∈�{ιi,ϑ j}
mini∈�,j∈�{ιi,ϑ j}

max

{ n∑

i=

max
j∈�

e∗
ijL

E
j ,

n∑

i=

max
i∈�

h∗
jiL

H
i

}

V
(
t–
k – τ

)
. (.)

In view of (.)-(.) and (H)-(H), using Lemma ., we have

V (t) ≤ MV ()e–(λ–η)t , t ≥ , (.)

where V () = sup–∞≤s≤ V (s). It follows from (.) that

n∑

i=

∣
∣xi(t + ω) – xi(t)

∣
∣ +

m∑

j=

∣
∣yj(t + ω) – yj(t)

∣
∣ ≤ ν‖φ – ϕ‖e–(λ–η)t , t ≥ , (.)

where

ν = M
maxi∈�,j∈�{ιi,ϑ j}
mini∈�,j∈�{ιi,ϑ j}

≥ ,

λ satisfies the condition (H). Notice that

xi(t + kω) = xi(t) +
k∑

l=

[
xi(t + lω) – xi

(
t + (l – )ω

)]
, i ∈ �,

yj(t + kω) = yj(t) +
k∑

l=

[
yj(t + lω) – yj

(
t + (l – )ω

)]
, j ∈ �.

In view of (.), we have

∞∑

l=

[
xi(t + lω) – xi

(
t + (l – )ω

)]

= lim
k→∞

k∑

l=

[
xi(t + lω) – xi

(
t + (l – )ω

)]

≤ ν‖φ – ϕ‖ lim
k→∞

k∑

l=

e–(λ–η)(t+(l–)ω)

≤ ν‖φ – ϕ‖e–(λ–η)t
∞∑

l=

e–(λ–η)(l–)ω < ∞, as k → ∞, (.)



He and Chu Advances in Difference Equations  (2017) 2017:61 Page 10 of 16

for any given t ≥ . By (.), we know that limk→∞ xi(t + kω) exists. Similarly, we know
that limk→∞ yj(t + kω) also exists.

Set (x∗(t), y∗(t))T = (x∗
 (t), x∗

(t), . . . , x∗
n(t), y∗

 (t), y∗
(t), . . . , y∗

m(t))T , where x∗
i = limk→∞ xi(t +

kω), y∗
j = limk→∞ yj(t + kω), then (x∗(t), y∗(t))T is a periodic function with period ω for

system (.).
Assume that system (.) has another ω-periodic solution (x∗∗(t), y∗∗(t))T as follows:

(
x∗∗(t,ψ), y∗∗(t,ψ)

)T =
(
x∗∗

 (t,ψ), x∗∗
 (t,ψ), . . . , x∗∗

n (t,ψ),

y∗∗
 (t,ψ), y∗∗

 (t,ψ), . . . , y∗∗
m (t,ψ)

)T ,

where ψ ∈ C
n, ψ ∈C

m. It follows from (.) that

n∑

i=

∣
∣x∗

i (t) – x∗∗
i (t)

∣
∣ +

m∑

j=

∣
∣y∗

j (t) – y∗∗
j (t)

∣
∣

=
n∑

i=

∣
∣x∗

i (t + kω) – x∗∗
i (t + kω)

∣
∣ +

m∑

j=

∣
∣y∗

j (t + kω) – y∗∗
j (t + kω)

∣
∣

≤ ν‖φ – ψ‖e(λ–η)(t+kω), t ≥ . (.)

Let k → ∞, then x∗
i (t) = x∗∗

i (t), y∗
j (t) = y∗∗

j (t), t ≥ . Thus we can conclude that system
(.) has a unique ω-periodic solution which is globally exponentially stable. The proof of
Theorem . is complete. �

Remark . Li [] investigated the existence and global exponential stability of a peri-
odic solution for impulsive Cohen-Grossberg-type BAM neural networks with continu-
ously distributed delays, the model in [] is not concerned with fuzzy terms. Bao [] dis-
cussed the existence and exponential stability of a periodic solution for BAM fuzzy Cohen-
Grossberg neural networks with mixed delays, the model in [] is not concerned with
impulsive effects. Yang [] considered the periodic solution for fuzzy Cohen-Grossberg
BAM neural networks with both time-varying and distributed delays and variable coef-
ficients, the model in [] is not concerned with impulsive effect and distributed delays.
Balasubramaniam et al. [] analyzed the global asymptotic stability of stochastic fuzzy
cellular neural networks with multiple time-varying delays, the model in [] is not con-
cerned with impulsive effect and distributed delays, Balasubramaniam and Vembarasan
[] studied the robust stability of uncertain fuzzy BAM neural networks of neutral-type
with Markovian jumping parameters and impulses, the authors did not discuss the exis-
tence and global exponential stability of a periodic solution of neural networks and the
model in [] is also not concerned with distributed delays. In this paper, we study the
exponential stability for fuzzy bidirectional associative memory Cohen-Grossberg neu-
ral networks with mixed delays and impulses. All the obtained results in [, , , ,
] cannot be applicable to model (.) to obtain the exponential stability of model (.).
From this viewpoint, our results on the exponential stability for fuzzy bidirectional asso-
ciative memory Cohen-Grossberg neural networks with mixed delays and impulses are
essentially new and complement earlier works to some extent.
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4 Examples
In this section, we consider the following neural networks with mixed delays and im-
pulses

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = ι(x(t))[–a(t, x(t)) +
∑

j= cj(t)fj(yj(t – τ (t)))
+
∧

j= αj(t)
∫ t

–∞ Kj(t – s)fj(yj(s)) ds +
∧

j= Tjuj +
∨

j= Hjuj

+
∨

j= βj(t)
∫ t

–∞ Kj(t – s)fj(yj(s)) ds + I(t)], t �= tk ,
ẋ(t) = ι(x(t))[–a(t, x(t)) +

∑
j= cj(t)fj(yj(t – τ (t)))

+
∧

j= αj(t)
∫ t

–∞ Kj(t – s)fj(yj(s)) ds +
∧

j= Tjuj +
∨

j= Hjuj

+
∨

j= βj(t)
∫ t

–∞ Kj(t – s)fj(yj(s)) ds + I(t)], t �= tk ,
�x(tk) = x(tk) – x(t–

k ) = –γkxi(t–
k ) +

∑
j= ej(t–

k )Ej(yj(t–
k – τ )), k ∈ Z+,

�x(tk) = x(tk) – x(t–
k ) = –γkx(t–

k ) +
∑

j= ej(t–
k )Ej(yj(t–

k – τ )), k ∈ Z+,
ẏ(t) = ϑ(y(t))[–b(t, yj(t)) +

∑
i= di(t)gi(xi(t – τ (t)))

+
∧

i= pi(t)
∫ t

–∞ Ni(t – s)gi(xi(s)) ds +
∧

i= Siui +
∨

i= Liui

+
∨

i= qi(t)
∫ t

–∞ Ni(t – s)gi(xi(s)) ds + J(t)], t �= tk ,
ẏ(t) = ϑ(y(t))[–b(t, yj(t)) +

∑
i= di(t)gi(xi(t – τ (t)))

+
∧

i= pi(t)
∫ t

–∞ Ni(t – s)gi(xi(s)) ds +
∧

i= Siui +
∨

i= Liui

+
∨

i= qi(t)
∫ t

–∞ Ni(t – s)gi(xi(s)) ds + J(t)], t �= tk ,
�y(tk) = y(tk) – y(t–

k ) = –δky(t–
k ) +

∑
i= hi(t–

k )Hi(xi(t–
k – τ )), k ∈ Z+,

�y(tk) = y(tk) – y(t–
k ) = –δky(t–

k ) +
∑

i= hi(t–
k )Hi(xi(t–

k – τ )), k ∈ Z+,

(.)

where

[
c(t) c(t)
c(t) c(t)

]

=

[
. + . sin t . + . cos t
. + . sin t . + . cos t

]

,

[
d(t) d(t)
d(t) d(t)

]

=

[
. + . sin t . + . cos t
. + . sin t . + . cos t

]

,

[
α(t) α(t)
α(t) α(t)

]

=

[
. + . cos t . + . sin t
. + . cos t . + . sin t

]

,

[
p(t) p(t)
p(t) p(t)

]

=

[
. + . cos t . + . sin t
. + . cos t . + . sin t

]

,

[
β(t) β(t)
β(t) β(t)

]

=

[
. + . sin t . + . cos t
. + . sin t . + . cos t

]

,

[
q(t) q(t)
q(t) q(t)

]

=

[
. + . cos t . + . sin t
. + . cos t . + . sin t

]

,

[
T T

T t

]

=

[
 
 

]

,

[
S S

S S

]

=

[
 
 

]

,

[
H H

H H

]

=

[
 
 

]

,

[
L L

L L

]

=

[
 
 

]

,

[
u u

I J

]

=

[
 + sin t  + cos t
 + sin t  + cos t

]

,
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[
e(t) e(t)
e(t) e(t)

]

=

[
tanh(.t) tanh(.t)
tanh(.t) tanh(.t)

]

,

[
h(t) h(t)
h(t) h(t)

]

=

[
tanh(.t) tanh(.t)
tanh(.t) tanh(.t)

]

,

[
γk(s) γk(s)
δk(s) δk(s)

]

=

[
– –
– –

]

,

[
ι(x(t)) ϑ(y(t))

a(t, x(t)) b(t, y(t))

]

=

[
. + . cos(x(t)) x(t)
. + . sin(y(t)) y(t)

]

,

[
ι(x(t)) ϑ(y(t))

a(t, x(t)) b(t, y(t))

]

=

[
. + . sin(x(t)) x(t)
. + . cos(y(t)) y(t)

]

,

[
K(s) K(s)
K(s) K(s)

]

=

[
e–s e–s

e–s e–s

]

,

[
N(s) N(s)
N(s) N(s)

]

=

[
e–s e–s

e–s e–s

]

,

[
E(y(t–

k – τ )) E(y(t–
k – τ ))

H(x(t–
k – τ )) H(x(t–

k – τ ))

]

=

[
tanh(.y(t–

k – .)) tanh(.y(t–
k – .))

tanh(.x(t–
k – .)) tanh(.x(t–

k – .))

]

.

Let tk = .πk, τ (t) = .| sin t|, f(u) = |u + |, g(u) = |u – |, then we get ι = ., ι =
., ϑ  = ., ϑ  = ., ι = ., ι = ., ϑ = ., ϑ = ., c∗

 = ., c∗
 = ., c∗

 = .,
c∗

 = ., d∗
 = ., d∗

 = ., d∗
 = ., d∗

 = ., α∗
 = ., α∗

 = ., α∗
 = ., α∗

 =
., p∗

 = ., p∗
 = ., p∗

 = ., p∗
 = ., β∗

 = ., β∗
 = ., β∗

 = ., β∗
 = ., q∗

 =
., q∗

 = ., q∗
 = ., q∗

 = ., h∗
 = , h∗

 = , h∗
 = , h∗

 = , τ = ., K(s) = e–s,
λ = ., ω = π , Lf

 = Lg
 = , LE

 = ., LE
 = ., LH

 = ., LH
 = .. It is easy to check

that

mini∈�,j∈�{��
i ,σ �

j }mini∈�,j∈�{ιi,ϑ j}
maxi∈�,j∈�{ιi,ϑ j}

= .,

max

{ n∑

i=

max
j∈�

c∗
jiL

f
j ,

m∑

j=

max
i∈�

d∗
ijL

g
i

}

+ max

{ n∑

i=

max
j∈�

α∗
jiL

f
j ,

n∑

i=

max
j∈�

β∗
jiL

f
j ,

m∑

j=

max
i∈�

p∗
ijL

g
i ,

m∑

j=

max
i∈�

q∗
ijL

g
i

}∫ ∞


K̃(s) ds

≈ ..

Choose λ = . < λ such that

λ < . – e.λ – .
∫ ∞


e(λ–)s ds.

Then we obtain

χl =
maxi∈�,j∈�{ιi,ϑ j}
mini∈�,j∈�{ιi,ϑ j}

× max
i∈�,j∈�

{

| – γil|, | – δjl| + max

{ n∑

i=

max
j∈�

e∗
ijL

E
j ,

m∑

j=

max
i∈�

h∗
jiL

H
i

}

eλτ

}

≈ ..
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Figure 1 Numerical solutions of system (3.1): times series of x1.

Figure 2 Numerical solutions of system (3.1): times series of x2.

Thus we can choose η = . < λ such that
∏n

l= max{,χl} = .n < .n ≈ eηtn for
all n ∈ Z+. Then all the conditions of Theorem . hold. Thus (.) has exactly one π-
periodic solution which is globally exponentially stable. These results are illustrated in
Figures , , , .

5 Conclusions
In this article, we have analyzed the global exponential stability of fuzzy bidirectional as-
sociative memory Cohen-Grossberg neural networks with mixed delays and impulses. By
constructing a suitable Lyapunov function and a new differential inequality, some suf-
ficient criteria which ensure the existence and global exponential stability of a periodic
solution of the model have been established. The obtained conditions are easy to check in
practice. The results in this paper extend and complement some previous studies. Finally,
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Figure 3 Numerical solutions of system (3.1): times series of y1.

Figure 4 Numerical solutions of system (3.1): times series of y2.

an example with their numerical simulations is carried out to illustrate the correctness.
To the best of our knowledge, there are only rare results on the exponential stability for
fuzzy bidirectional associative memory Cohen-Grossberg neural networks with propor-
tional delays, which will be our future research direction.
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