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Abstract
The problem of delay-probability-distribution-dependent robust stability for a class of
discrete-time stochastic neural networks (DSNNs) with delayed and parameter
uncertainties is investigated. The information of the probability distribution of the
delay is considered and transformed into parameter matrices of the transferred DSSN
model. In the DSSN model, the time-varying delay is characterized by introducing a
Bernoulli stochastic variable. By constructing an augmented Lyapunov-Krasovskii
functional and introducing some analysis techniques, some novel
delay-distribution-dependent mean square stability conditions for the DSSN, which
are to be robustly globally exponentially stable, are derived. Finally, a numerical
example is provided to demonstrate less conservatism and effectiveness of the
proposed methods.

Keywords: discrete-time stochastic neural networks; discrete time-varying delays;
delay-probability-distribution-dependent; robust exponential stability; LMIs

1 Introduction
In the past few decades, neural networks (NNs) have received considerable attention ow-
ing to their potential applications in a variety of areas such as signal processing [], pat-
tern recognition [], static image processing [], associative memory [], combinatorial
optimization [] and so on. In recent years, the stability problem of time-delay NNs has
become a topic of great theoretic and practical use importance due to the fact that in-
herent time delays and unavoidable parameter uncertainties are all well known to many
biological and artificial NNs because of the finite speed of information processing as well
as the NNs parameter fluctuations of the hardware implementation. Various efforts have
been achieved in the stability analysis of NNs with time-varying delays and parameter
uncertainties, please refer to [–] and some following references.
The majority of the existing research results have been limited in continuous-time and

deterministic NNs. On the one hand, in implementation and application of the NNs,
discrete-time neural networks (DNNs) play a more important role than their continuous-
time counter-parts in today’s digital world. To bemore specific, DNNs can ideally keep the
dynamical characteristics, functional similarity, and even the physical of biological reality
of the continuous-time NNs under mild restriction. On the other hand, when modeling
realNNs systems, stochastic disturbance is probably themain resource of the performance
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degradation of the implemented NN. Thus, the research on the dynamical behavior of
discrete-time stochastic neural networks (DSNNs) with time-varying delays and param-
eter uncertainties is necessary. Recently, stability analysis for DSNNs with time-varying
delays and parameter uncertainties has received more and more interest. Some stability
criteria have been proposed in [–]. In [], Liu with his coauthor have researched a
class of DSNNs with time-varying delays and parameter uncertainties and have proposed
some delay-dependent sufficient conditions guaranteeing the global robust exponential
stability by using the Lyapunov method and the linear matrix inequality technology. Em-
ploying the similar technique to that in [], the result obtained in [] has been improved
by Zhang et al. in [] and Luo with his coauthor in [].
In practice, the time-varying delay in some NNs often exists in a stochastic fashion [–

]. That is, the time-varying delay in some NNsmay be subject to probabilistic measure-
ment delays. In some NNs, the output signal of the node is transferred to another node
by multi-branches with arbitrary time delays, which are random, and its probabilities can
often be measured by the statistical methods such as normal distribution, uniform distri-
bution, Poisson distribution, Bernoulli random binary distribution. Inmost of the existing
references for DSNNs, the deterministic time delay case was concerned, and the stability
criteria were derived based on the information of variation range of the time delay, [–
], or the information of variation range of the time delay and time delays themselves []
and []. However, it often occurs in the real systems, where the max value of the delay
is very large, but the probability of it to take such a large value is very small. It may lead
to a more conservative result if only the information of variation range of time delay is
considered. Yet, as far as we know, little attention has been paid to the study of stability of
DSNNs with stochastic time delay, when considering the variation range and the proba-
bility distribution of the time delay. More recently, in [], some sufficient conditions on
robust globally exponential stability for a class of SDNNs, which is an involved parameter,
uncertainties and stochastic delay were derived. What is more, the robust globally expo-
nential stability analysis problem for uncertain DSNNs with random delay has not been
adequately investigated and still needs challenge.
In this paper, some new improved delay-probability-distribution-dependent stability

criteria, which guarantee the robust global exponential stability for discrete-time stochas-
tic neural networks with time-varying delay are obtained via constructing a novel aug-
mented Lyapunov-Krasovskii functional. These new conditions are less conservative than
those obtained in [–] and []. The numerical example is also provided to illuminate
the improvement of the proposed criteria.
The notations are quite standard. Throughout this paper, N+ stands for the set of non-

negative integers, Rn and Rn×m denote, respectively, the n-dimensioned Euclidean space
and the set of all n × m real matrices. The superscript ‘T ’ denotes the transpose and the
notation X ≥ Y (respective X > Y ) means that X and Y are symmetric matrices, and that
X – Y is positive semi-definitive (respective positive definite). ‖ · ‖ is the Euclidean norm
in Rn. I is the identity matrix with appropriate dimensions. If A is a matrix, denote by ‖A‖
its own operator norm, i.e., ‖A‖ = sup{‖Ax‖ : ‖x‖ = } = √

λmax(ATA), where λmax(A) (re-
spectively, λmin(A))means the largest (respectively, smallest) eigenvalue ofA.Moreover, let
(�,F , {Ft}t≥,P) be a complete probability space with a filtration {Ft}t≥ to satisfy the usual
conditions (i.e., the filtration contains all P-null sets and is right continuous). E{·} stands
for themathematical expectation operatorwith respect to the given probabilitymeasureP.
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The asterisk ∗ in a matrix is used to denote term that is induced by symmetry. Matrices, if
not explicitly, are assumed to have compatible dimensions.N[a,b] = {a,a+, . . . ,b}. Some-
times, the arguments of function will be omitted in the analysis when no confusion can
arise.

2 Problem formulation and preliminaries
Consider the following n-neurons parameter uncertainties DSNN with time-varying de-
lays:

x(k + ) =
(
A +�A(k)

)
x(k) +

(
B +�B(k)

)
f
(
x(k)

)
+

(
D +�D(k)

)
g
(
x
(
k – τ (k)

))
+ σ

(
k,x(k),x

(
k – τ (k)

))
ω(k), ()

where x(k) = [x(k),x(k), . . . ,xn(k)]T ∈ Rn denotes the state vector associated with the n-
neurons, the positive integer τ (k) denotes the time-varying delay, satisfying τm ≤ τ (k) ≤
τM , k ∈ N+, the τm and τM are known positive integers. The initial condition associated
with model () is given by

x(k) = φ(k), k ∈ [–τM, ]. ()

The diagonal matrix A = diag(a,a, . . . ,an) with |ai| <  is the state feedback coeffi-
cient matrix, B = (bij)n×n and D = (dij)n×n are the connection weight matrix and the de-
layed connection weight matrix, respectively, f (x(k)) = [f(x(k)), f(x(k)), . . . , fn(xn(k))]T

and g(x(k)) = [g(x(k)), g(x(k)), . . . , gn(xn(k))]T denote the neuron activation functions,
σ (k,x(k),x(k – τ (k))) is the noise intensity function vector, �A(k), �B(k) and �D(k) de-
note the parameter uncertainties which satisfy the following condition:

[
�A(k)�B(k)�D(k)

]
=MF(k)[EaEbEd], ()

where M, Ea, Eb, Ed are known real constant matrices with appropriate dimensions, and
F(k) is an unknown time-varying matrix which satisfies

FT (k)F(k)≤ I, k ∈ N+. ()

ω(k) is a scalar Wiener process (Brownian motion) on (�,F , {Ft}t≥,P) with

E
(
ω(k)

)
= , E

(
ω(k)

)
= , E

(
ω(i)ω(j)

)
= , i �= j. ()

Assumption  For each neuron, activation function in system (), fi(·) and gi(·) i =
, , . . . ,n are bounded and satisfy the following conditions: ∀ξ, ξ ∈ R, ξ �= ξ,

γ –
i ≤ fi(ξ) – fi(ξ)

ξ – ξ
≤ γ +

i ,

�–
i ≤ gi(ξ) – gi(ξ)

ξ – ξ
≤ �+

i ,

fi() = gi() = , i = , , . . . ,n,

()

where γ –
i , γ +

i , �–
i and �+

i are known constants.
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Remark  The constants γ –
i , γ +

i , �–
i , �+

i in Assumption  are allowed to be positive, neg-
ative, or zero. Hence, the functions f (x(k)) and g(x(k)) could be non-monotonic, and are
more general than the usual sigmoid functions and the commonly used Lipschitz condi-
tions recently.

Assumption  σ (k,x(k),x(k – τ (k))) : R× Rn × Rn → Rn is the continuous function, and
is assumed to satisfy

σTσ ≤
(

x(k)
x(k – τ (k))

)T

G

(
x(k)

x(k – τ (k))

)
, ()

where

G =

(
G G

∗ G

)
.

Remark  Choose G = ρI , G = , G = ρI , we can find that () is reduced to

σTσ ≤ ρ
∥∥x(k)∥∥ + ρ

∥∥x(k – τ (k)
)∥∥, ()

where ρ > , ρ >  are known constant scalars. Thus, the assumption condition () is
a special case of the assumption condition (). It should be pointed out that the robust
delay-distribution-dependent stability criteria for DSNNs with time-varying delay by ()
is generally less conservative than by ().

Assumption  For any τm ≤ τ < τM , assume that τ (k) takes values in [τm, τ] or (τ, τM],
considering the information of probability distribution of the time-varying delay, two sets
and two mapping functions are defined

� =
{
k|τ (k) ∈ [τm, τ]

}
, � =

{
k|τ (k) ∈ (τ, τM]

}
, ()

τ(k) =

{
τ (k), k ∈ �,
τm, else,

τ(k) =

{
τ (k), k ∈ �,
τ, else.

()

It is obvious that � ∪ � = N+, � ∩ � =  (empty set). It is easy to check that k ∈ �

implies that the event τ (k) ∈ [τm, τ] takes place, and k ∈ � means that τ (k) ∈ (τ, τM]
happens.
Define a stochastic variable as

α(k) =

{
, k ∈ �,
, k ∈ �.

()

Assumption  α(k) is a Bernoulli distributed sequence with

Prob
{
α(k) = 

}
= α, Prob

{
α(k) = 

}
= ᾱ =  – α, ()

where α is a constant.
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Remark  From Assumption , it is easy to see that

E
{
α(k)

}
= α, E

{
α(k)ᾱ(k)

}
= , E

{
α(k) – α

}
= ,

E
{(

α(k) – α
)} = αᾱ, E

{(
α(k)

)} = α.
()

By Assumptions  and , system () can be rewritten as

x(k + ) =
(
A +�A(k)

)
x(k) +

(
B +�B(k)

)
f
(
x(k)

)
+ α(k)

(
D +�D(k)

)
g
(
x
(
k – τ(k)

))
+

(
 – α(k)

)(
D +�D(k)

)
g
(
x
(
k – τ(k)

))
+ α(k)σ

(
k,x(k),x

(
k – τ(k)

))
ω(k)

+
(
 – α(k)

)
σ
(
k,x(k),x

(
k – τ(k)

))
ω(k). ()

Assumption  Assume that for any k ∈N+, α(k) is independent of ω(k).

Remark  It is noted that the introduction of binary stochastic variable was first intro-
duced in [] and then successfully used in [, , ]. By introducing the new functions
τ(k) and τ(k), the stochastic variable sequence α(k), system () is transformed into ().
In (), the probabilistic effects of the time delay have been translated into the parameter
matrices of the transformed system. Then, the stochastic stability criteria based on the
new model () can be derived, which show the relationship between the stability of the
system and the variation range of the time delay and the probability distribution parame-
ter.
For brevity of the following analysis, we denote A + �A(k), B + �B(k), D + �D(k) and

 – α(k) by Ak , Bk , Dk , and ᾱ(k), respectively. Then () can be rearranged as

x(k + ) = Akx(k) + Bkf
(
x(k)

)
+ α(k)Dkg

(
x
(
k – τ(k)

))
+ ᾱ(k)Dkg

(
x
(
k – τ(k)

))
+ α(k)σ

(
k,x(k),x

(
k – τ(k)

))
ω(k)

+ ᾱ(k)σ
(
k,x(k),x

(
k – τ(k)

))
ω(k). ()

It is obvious that x(k) =  is a trivial solution of DSNN ().

The following definition and lemmas are needed to conclude our main results.

Definition . [] The DSNN () is said to be robustly exponentially stable in the mean
square if there exist constants α >  and μ ∈ (, ) such that every solution of the DSNN
() satisfies that

E
{∥∥x(k)∥∥} ≤ αμk max

–τM≤i≤
E
{∥∥x(i)∥∥}, ∀k ∈N+ ()

for all parameter uncertainties satisfying the admissible condition.
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Lemma. [] Given the constantmatrices�,� and� with appropriate dimensions,
where � =�T

 and � =�T
 > , then � +�T

 �–
 � <  if and only if

(
� �T



∗ –�

)
<  or

(
–� �

∗ �

)
< .

Lemma . [] Let x, y ∈ Rn and ε > . Then we have

xTy + yTx≤ ε–xTx + εyTy.

3 Robustly globally square exponentially stable of DSNNs
In this section, we shall establish our main criteria based on the LMI approach. For pre-
sentation convenience, in the following, we define

� = diag
{
γ –
 γ +

 ,γ
–
 γ +

 , . . . ,γ
–
n γ +

n
}
, � = diag

{
�–
 ,�

–
 , . . . ,�

–
n
}
,

� = diag

{
γ –
 + γ +




,
γ –
 + γ +




, . . . ,
γ –
n + γ +

n


}
,

� = diag
{
�+
 ,�

+
 , . . . ,�

+
n
}
, � = diag

{
�–
 �

+
 ,�

–
�

+
 , . . . ,�

–
n�

+
n
}
,

� = diag

{
�–
 + �+




,
�–
 + �+




, . . . ,
�–
n + �+

n


}
.

Theorem . For given positive integers τm, τM , τm ≤ τ < τM , under Assumptions -, the
DSNN () is globally exponentially stable in the mean square, if there exist symmetric
positive-definite matrices P, Q, Q, Z, Z with appropriate dimensional, positive-definite
diagonal matrices H , R, S, T , �, �, �, � and two positive constants ε, λ∗ such that the
following two matrix inequalities hold:

P ≤ λ∗I, ()

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� αλ
∗G ᾱλ

∗G � � � �

∗ �    � 
∗ ∗ �    �

∗ ∗ ∗ �  � �

∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ � 
∗ ∗ ∗ ∗ ∗ ∗ �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ , ()

where

� = AT
k PAk – P + αλ

∗G + ᾱλ
∗G – (τM – τ + )�H

+ (τM – τ + )�R + (τ – τm + )Q + (τM – τ + )Q

– (τ – τm + )�S + (τ – τm + )�T – �� – ��,

� = (τM – τ + )H – (τM – τ + )R + (τ – τm + )S

– (τ – τm + )T + ��,

http://www.advancesindifferenceequations.com/content/2013/1/314
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� = αλ
∗G + �S – �T –Q – ��,

� = ᾱλ
∗G + �H – �R –Q – ��,

� = (τ – τm + )Z + (τM – τ + )Z –�,

� = αAT
k PDk , � = AT

k PBk + ��,

� = ᾱAT
k PDk , � = –S + T + ��,

� = –H + R + ��, � = BT
k PBk –�,

� = αBT
k PDk , � = ᾱBT

k PDk ,

� = αDT
k PDk – Z –�, � = ᾱDT

k PDk – Z –�.

Proof We construct the following Lyapunov-Krasovskii functional candidate for system
():

V
(
k,x(k)

)
=

∑
i=

Vi
(
k,x(k)

)
, ()

where

V
(
k,x(k)

)
= xT (k)Px(k),

V
(
k,x(k)

)
= 

–τ+∑
i=–τM+

k–∑
j=k+i–

{[
g
(
x(j)

)
– �x(j)

]THx(j) + [
�x(j) – g

(
x(j)

)]TRx(j)},

V
(
k,x(k)

)
= 

–τm+∑
i=–τ+

k–∑
j=k+i–

{[
g
(
x(j)

)
– �x(j)

]TSx(j) + [
�x(j) – g

(
x(j)

)]TTx(j)},

V
(
k,x(k)

)
=

k–∑
i=k–τ(k)

xT (i)Qx(i) +
–τm∑

i=–τ+

k–∑
j=k+i

xT (j)Qx(j),

V
(
k,x(k)

)
=

k–∑
i=k–τ(k)

xT (i)Qx(i) +
–τ∑

i=–τM+

k–∑
j=k+i

xT (j)Qx(j),

V
(
k,x(k)

)
=

k–∑
i=k–τ(k)

gT
(
x(i)

)
Zg

(
x(i)

)
+

τ–∑
i=τm

k–∑
j=k–i

gT
(
x(j)

)
Zg

(
x(j)

)
,

V
(
k,x(k)

)
=

k–∑
i=k–τ(k)

gT
(
x(i)

)
Zg

(
x(i)

)
+

τM–∑
i=τ

k–∑
j=k–i

gT
(
x(j)

)
Zg

(
x(j)

)
.

Denote X = {x(k),x(k – ), . . . ,x(k – τ (k))}. Calculating the difference of V (k,x(k)) and tak-
ing the mathematical expectation, by (), and Assumption  and Remark , we have

E
{
�V

(
k,x(k)

)}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}
= E

{
xT (k)

(
AT
k PAk – P

)
x(k) + xT (k)AT

k PBkf
(
x(k)

)
+ αxT (k)AT

k PDkg
(
x
(
k – τ(k)

))
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+ ᾱxT (k)AT
k PDkg

(
x
(
k – τ(k)

))
+ f T

(
x(k)

)
BT
k PBkf

(
x(k)

)
+ αf T

(
x(k)

)
BT
k PDkg

(
x
(
k – τ(k)

))
+ ᾱf T

(
x(k)

)
BT
k PDkg

(
x
(
k – τ(k)

))
+ αgT

(
x
(
k – τ(k)

))
DT

k PDkg
(
x
(
k – τ(k)

))
+ ᾱgT

(
x
(
k – τ(k)

))
DT

k PDkg
(
x
(
k – τ(k)

))
+ ασ

T(
k,x(k),x

(
k – τ(k)

))
Pσ

(
k,x(k),x

(
k – τ(k)

))
+ ᾱσ

T(
k,x(k),x

(
k – τ(k)

))
Pσ

(
k,x(k),x

(
k – τ(k)

))}
. ()

It is very easy to check from Assumption  and () that

ασ
T(
k,x(k),x

(
k – τ(k)

))
Pσ

(
k,x(k),x

(
k – τ(k)

))

≤ αλ
∗

(
x(k)

x(k – τ(k))

)T (
G G

∗ G

)(
x(k)

x(k – τ(k))

)
, ()

ᾱσ
T(
k,x(k),x

(
k – τ(k)

))
Pσ

(
k,x(k),x

(
k – τ(k)

))

≤ ᾱλ
∗

(
x(k)

x(k – τ(k))

)T (
G G

∗ G

)(
x(k)

x(k – τ(k))

)
, ()

E
{
�V(k)

}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}

= E

{ –τ+∑
i=–τM+

{[
g
(
x(k)

)
– �x(k)

]THx(k) + [
�x(k) – g

(
x(k)

)]TRx(k)}

–
k–τ∑

i=k–τM

{[
g
(
x(i)

)
– �x(i)

]THx(i)

+
[
�x(i) – g

(
x(i)

)]TRx(i)}
}

≤ E
{
(τM – τ + )

[
g
(
x(k)

)
– �x(k)

]THx(k)
+ (τM – τ + )

[
�x(k) – g

(
x(k)

)]TRx(k)
– 

[
g
(
x
(
k – τ(k)

))
– �x

(
k – τ(k)

)]THx(k – τ(k)
)

– 
[
�x

(
k – τ(k)

)
– g

(
x
(
k – τ(k)

))]TRx(k – τ(k)
)}
, ()

E
{
�V(k)

}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}
≤ E

{
(τ – τm + )

[
g
(
x(k)

)
– �x(k)

]TSx(k)
+ (τ – τm + )

[
�x(k) – g

(
x(k)

)]TTx(k)
– 

[
g
(
x
(
k – τ(k)

))
– �x

(
k – τ(k)

)]TSx(k – τ(k)
)

– 
[
�x

(
k – τ(k)

)
– g

(
x
(
k – τ(k)

))]TTx(k – τ(k)
)}
, ()
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E
{
�V(k)

}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}

= E

{( k∑
i=k+–τ(k+)

–
k–∑

i=k–τ(k)

)
xT (i)Qx(i)

+
–τm∑

i=–τ+

( k∑
j=k+i+

–
k–∑
j=k+i

)
xT (j)Qx(j)

}

= E

{
xT (k)Qx(k) – xT

(
k – τ(k)

)
Qx

(
k – τ(k)

)

+

( k–∑
i=k+–τ(k+)

–
k–∑

i=k–τ(k)+

)
xT (i)Qx(i)

+
–τm∑

i=–τ+

(
xT (k)Qx(k) – xT (k + i)Qx(k + i)

)}

≤ E

{
(τ – τm + )xT (k)Qx(k) –

k–τm∑
i=k–τ+

xT (i)Qx(i)

+

( k–∑
i=k+–τ

–
k–∑

i=k–τm+

)
xT (i)Qx(i)

– xT
(
k – τ(k)

)
Qx

(
k – τ(k)

)}

= E
{
(τ – τm + )xT (k)Qx(k)

– xT
(
k – τ(k)

)
Qx

(
k – τ(k)

)}
, ()

E
{
�V(k)

}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}
≤ E

{
(τM – τ + )xT (k)Qx(k)

– xT
(
k – τ(k)

)
Qx

(
k – τ(k)

)}
, ()

E
{
�V(k)

}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}

= E

{( k∑
i=k+–τ(k+)

–
k–∑

i=k–τ(k)

)
gT

(
x(i)

)
Zg

(
x(i)

)

+
τ–∑
i=τm

( k∑
j=k–i+

–
k–∑
j=k–i

)
gT

(
x(j)

)
Zg

(
x(j)

)}

= E

{
gT

(
x(k)

)
Zg

(
x(k)

)
– gT

(
x
(
k – τ(k)

))
Zg

(
x
(
k – τ(k)

))

+

( k–∑
i=k+–τ(k+)

–
k–∑

i=k–τ(k)+

)
gT

(
x(i)

)
Zg

(
x(i)

)

+
τ–∑
i=τm

(
gT

(
x(k)

)
Zg

(
x(k)

)
– gT

(
x(k – i)

)
Zg

(
x(k – i)

))}
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≤ E

{
(τ – τm + )gT

(
x(k)

)
Zg

(
x(k)

)

–
k–τm∑

i=k–τ+

gT
(
x(i)

)
Zg

(
x(i)

)

+

( k–∑
i=k+–τ

–
k–∑

i=k–τm+

)
gT

(
x(i)

)
Zg

(
x(i)

)

– gT
(
x
(
k – τ(k)

))
Zg

(
x
(
k – τ(k)

))}

= E
{
(τ – τm + )gT

(
x(k)

)
Zg

(
x(k)

)
– gT

(
x
(
k – τ(k)

))
Zg

(
x
(
k – τ(k)

))}
, ()

E
{
�V(k)

}
= E

{
E
{
V

(
k + ,x(k + )

)|X}
–V

(
k,x(k)

)}
≤ E

{
(τM – τ + )gT

(
x(k)

)
Zg

(
x(k)

)
– gT

(
x
(
k – τ(k)

))
Zg

(
x
(
k – τ(k)

))}
. ()

From (), it follows that

(
fi
(
x(k)

)
– γ +

i xi(k)
)(
fi
(
x(k)

)
– γ –

i xi(k)
) ≤ , i = , , . . . ,n,

which are equivalent to

(
x(k)

f (x(k))

)T (
γ –
i γ +

i eieTi – γ –
i +γ +

i
 eieTi

∗ eieTi

)(
x(k)

f (x(k))

)
≤ , ()

where ei denotes the unit column vector having one element on its ith row, zeros else-
where.
Then from () and (), for any matrices � = diag{λ,λ, . . . ,λn} > , it follows that

(
x(k)

f (x(k))

)T (
–�� ��

∗ –�

)(
x(k)

f (x(k))

)
≥ . ()

Similarly, for any matrices �i = diag{λi,λi, . . . ,λin} > , i = , , , we get the following
inequalities:

(
x(k)

g(x(k))

)T (
–�� ��

∗ –�

)(
x(k)

g(x(k))

)
≥ , ()

(
x(k – τ(k))

g(x(k – τ(k)))

)T (
–�� ��

∗ –�

)(
x(k – τ(k))

g(x(k – τ(k)))

)
≥ , ()

(
x(k – τ(k))

g(x(k – τ(k)))

)T (
–�� ��

∗ –�

)(
x(k – τ(k))

g(x(k – τ(k)))

)
≥ . ()
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Then from () to (), we have

E
{
�V (k)

} ≤ E
{
ζT (k)�ζ (k)

}
, ()

where

ξT (k) =
[
xT (k),xT

(
k – τ(k)

)
,xT

(
k – τ(k)

)
, f T

(
x(k)

)
, gT

(
x(k)

)
,

gT
(
x
(
k – τ(k)

))
, gT

(
x
(
k – τ(k)

))]
.

Since � < , from (), we can conclude that

E
{
�V (k)

} ≤ λmax(�)E
{∥∥x(k)∥∥}. ()

It is easy to derive that

E
{
V (k)

} ≤ μE
{∥∥x(k)∥∥} +μ

k–∑
i=k–τM

E
{∥∥x(i)∥∥}, ()

where

μ = λmax(P),

μ = (τM – τ + )
[
γ ∗(λmax(H) + λmax(R)

)
+ �∗λmax(Z)

]
+ (τ – τm + )

[
γ ∗(λmax(S) + λmax(T)

)
+ �∗λmax(Z)

]
+ (τ – τm + )λmax(Q) + (τM – τ + )λmax(Q)

with

γ ∗ = max
≤i≤n

{∣∣γ –
i
∣∣, ∣∣γ +

i
∣∣}, �∗ = max

≤i≤n

{∣∣�–
i
∣∣, ∣∣�+

i
∣∣}.

For any θ > , it follows from () and () that

E
{
θ k+V (k + ) – θ kV (k)

}
= θ k+E

{
�V (k)

}
+ θ k(θ – )E

{
V (k)

}
≤ θ k[(θ – )μ + θλmax(�)

]
E
{∥∥x(k)∥∥}

+ (θ – )μ

k–∑
i=k–τM

E
{∥∥x(i)∥∥}. ()

Furthermore, for any integer N ≥ τM + , summing up both sides of () from  to N – 
with respect to k, we have

θNE
{
V (N)

}
– E

{
V ()

} ≤ (
(θ – )μ + θλmax(�)

) N–∑
k=

θ kE
{∥∥x(k)∥∥}

+μ(θ – )
N–∑
k=

k–∑
i=k–τM

θ kE
{∥∥x(i)∥∥}. ()
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Note that for τM ≥ , it is easy to compute that

N–∑
k=

k–∑
i=k–τM

θ kE
{∥∥x(i)∥∥} ≤

( –∑
i=–τM

i+τM∑
k=

+
N––τM∑

i=

i+τM∑
k=i+

+
N–∑

i=N–τM

N–∑
k=i+

)
μkE

{∥∥x(i)∥∥}

≤ τMθτM sup
–τM≤i≤

E
{∥∥x(i)∥∥} + τMθτM

N–∑
i=

θ iE
{∥∥x(i)∥∥}. ()

Then from () and (), one has

θNE
{
V (N)

} ≤ E
{
V ()

}
+ τMθτM (θ – )μ sup

–τM≤i≤
E
{∥∥x(i)∥∥}

+
[
(θ – )μ + θλmax(�) + τMθτM (θ – )μ

] N–∑
k=

θ kE
{∥∥x(k)∥∥}. ()

Let μ∗ =max{μ,μ}. From (), it is obvious that

E
{
V ()

} ≤ μ∗ sup
–τM≤i≤

E
{∥∥x(i)∥∥}. ()

In addition, by (), we can get

E
{
V (N)

} ≥ λmin(P)E
{∥∥x(N)

∥∥}. ()

In addition, it can be verified that there exists a scalar θ >  such that

(θ – )μ + θλmax(�) + τMθτM (θ – )μ = . ()

Substituting ()-() into (), we obtain

E
{∥∥x(N)

∥∥} ≤ μ∗ + τMθ
τM
 (θ – )μ

λmin(P)

(

θ

)N

sup
–τM≤i≤

E
{∥∥x(i)∥∥}. ()

By Definition ., the DSNN () is globally exponentially stable in the mean square. This
completes the proof. �

Remark  In Theorem ., free-weighting matrices R, H , S, T are introduced by con-
structing a new Lyapunov functional (). On the one hand, in (), the useful informa-
tion of the time delays is considered sufficiently. On the other hand, the terms V(k,x(k)),
V(k,x(k)) are introduced and make full use of the information of the activation function
g(x(k)).Whichmake this stability criterion generally less conservative than those obtained
in [–, ]. However, because of the parameter uncertainties contained in (), it is dif-
ficult to use Theorem . directly to determine the stability of the DSNN (). Thus, it is
necessary for us to give another criterion as follows.

Theorem . For given positive integers τm, τM , τm ≤ τ < τM , under Assumptions -, the
DSNN () is robustly globally exponentially stable in the mean square if there exist sym-
metric positive-definite matrices P, Q, Q, Z, Z with appropriate dimensional, positive-
definite diagonal matrices H , R, S, T , �, �, �, � and positive constants ε, λ∗ such that

http://www.advancesindifferenceequations.com/content/2013/1/314
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the following two LMIs hold:

P ≤ λ∗I, ()

�̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃ αλ
∗G ᾱλ

∗G �̃ �̃ �̃ �̃ ATP 
∗ �̃    �̃   
∗ ∗ �̃    �̃  
∗ ∗ ∗ �̃  �̃ �̃ BTP 
∗ ∗ ∗ ∗ �̃    
∗ ∗ ∗ ∗ ∗ �̃  αDTP 
∗ ∗ ∗ ∗ ∗ ∗ �̃ ᾱDTP 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –P PM
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ , ()

where

�̃ = εET
a Ea – P + αλ

∗G + ᾱλ
∗G – (τM – τ + )�H

+ (τM – τ + )�R + (τ – τm + )Q + (τM – τ + )Q

– (τ – τm + )�S + (τ – τm + )�T – �� – ��,

�̃ = (τM – τ + )H – (τM – τ + )R + (τ – τm + )S

– (τ – τm + )T + ��,

�̃ = αλ
∗G + �S – �T –Q – ��,

�̃ = ᾱλ
∗G + �H – �R –Q – ��,

�̃ = (τ – τm + )Z + (τM – τ + )Z –�,

�̃ = εET
a Eb + ��, �̃ = αεET

a Ed, �̃ = ᾱεET
a Ed,

�̃ = –H + R + ��, �̃ = ᾱεET
a Ed, �̃ = –S + T + ��,

�̃ = εET
b Eb –�, �̃ = αεET

b Ed, �̃ = ᾱεET
b Ed,

�̃ = αεET
d Ed – Z –�, �̃ = ᾱεET

d Ed – Z –�.

Proof We show that � <  in () implies that �∗ + ηTP–η < , where

�∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�∗
 αλ

∗G ᾱλ
∗G �� �  

∗ �    � 
∗ ∗ �    �∗



∗ ∗ ∗ –�   
∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ –Z –� 
∗ ∗ ∗ ∗ ∗ ∗ –Z –�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ ,

�∗
 = –P + αλ

∗G + ᾱλ
∗G – (τM – τ + )�T

 H

+ (τM – τ + )�T
 R + (τ – τm + )Q + (τM – τ + )Q,

η = [PAk , , ,PBk , ,αkPDk , ᾱkPDk].

http://www.advancesindifferenceequations.com/content/2013/1/314
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According to Lemma ., �∗ + ηTP–η <  is equivalent to

(
�∗ ηT

η –P

)
=

(
�∗ ηT



η –P

)
+

(
 ηT



η 

)
<  ()

with

η = [PA, , ,PB, ,αPD, ᾱPD],

η =
[
P�A(k), , ,P�B(k), ,αP�D(k), ᾱP�D(k)

]
.

From Lemma ., we can get

(
 ηT



η 

)
=�MF(k)� +�T

 F
T (k)MT�T



≤ ε–�MMT�T
 + ε�T

 �, ()

where

� = [, , , , , , ,P],

� = [Ea, , ,Eb, ,αEd, ᾱEd, ].

Combining () with (), we have

((
�∗ ηT
η –P

)
+ ε�T

 � �M
∗ –εI

)
≤ ,

which implies that () holds. This completes the proof. �

Remark  When αk ≡ , the DSNN () reduce to (), which has been well investigated
in [–]. By setting Gi = ρiI , i = , , ,  and G = G =  in Theorem . and deleting
the fifth rows and the corresponding fifth columns of (), we can obtain the stability
condition for system (), which can be easily seen to be equivalent to Theorem . in [].
If the stochastic term and parameter uncertainties are removed in (), then () reduces

to

x(k + ) = Ax(k) + Bf
(
x(k)

)
+ α(k)Dg

(
x
(
k – τ(k)

))
+ ᾱ(k)Dg

(
x
(
k – τ(k)

))
, ()

then we get the following results.

Corollary . For given positive integers τm, τM , τm ≤ τ < τM , under Assumptions -,
the DSNN () is globally exponentially stable in the mean square if there exist symmetric
positive-definite matrices P, Q, Q, Z, Z with appropriate dimensional, positive-definite
diagonal matrices H , R, S, T , �, �, �, � and a positive constant ε such that the fol-
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lowing LMI holds:

�̌ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̌   �̌ � �̌ �̌

∗ �̌    � 
∗ ∗ �̌    �

∗ ∗ ∗ �̌  �̌ �̌

∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ �̌ 
∗ ∗ ∗ ∗ ∗ ∗ �̌

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ , ()

where

�̌ = ATPA – P – (τM – τ + )�H + (τM – τ + )�R

+ (τ – τm + )Q + (τM – τ + )Q – �� – ��

– (τ – τm + )�S + (τ – τm + )�T ,

�̌ = �S – �T –Q – ��, �̌ = αDTPD – Z –�,

�̌ = �H – �R –Q – ��, �̌ = ᾱDTPD – Z –�,

�̌ = ATPB + ��, �̌ = αATPD, �̌ = ᾱATPD,

�̌ = BTPB –�, �̌ = αBTPD, �̌ = ᾱBTPD.

4 Example
In this section, a numerical example will be presented to show the effectiveness of the
main results derived in Section . For the convenience of comparison, let us consider the
DSNN () with the following parameters:

A =

(
–. 
 .

)
, B =

(
. –.
 –.

)
, D =

(
 .
. –.

)
,

M =

(
–. 
. .

)
, Ea =

(
. 
 .

)
, Eb =

(
–. .
. 

)
,

Ed =

(
. 
. –.

)
, G =G =G =G =

(
. 
 .

)
,

G =G = ×,

f(s) = sin(.s) – . cos(s), f(s) = tanh(–.s),

g(s) = tanh(.s) + . cos(s), g(s) = tanh(.s).

It is easy to verify that

� =

(
–. 
 

)
, � =

(
 
 –.

)
, � =

(
–. 
 

)
,

� =

(
 
 .

)
, � =

(
–. 
 

)
, � =

(
. 
 .

)
.
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Table 1 For given τm = 1, τ0 = 2, allowable upper bounds τM with different probability
distribution of time delay

0.5 0.6 0.7 0.72 0.8 0.89 0.95 0.99 1

By [28] 3 3 3 4 5 8 16 22 +∞
By Theorem 3.2 5 5 6 6 7 12 24 117 +∞

For τ = , τ = , τM =  and α = ., by using Matlab LMI toolbox, we can solve a set
of feasible solutions for the LMIs () and () in Theorem ., which are listed as follows:

P =

(
. –.
–. .

)
, Z =

(
. –.
–. .

)
,

Z =

(
. .
. .

)
, Q =

(
. –.
–. .

)
,

Q =

(
. –.
–. .

)
, H =

(
. 

 .

)
,

R =

(
. 

 .

)
, S =

(
. 

 .

)
,

T =

(
. 

 .

)
, � =

(
. 

 .

)
,

� =

(
. 

 .

)
, � =

(
. 

 .

)
,

� =

(
. 

 .

)
, ε = ., λ∗ = ..

Therefore, for all admissible parameter uncertainties and external perturbations, the
DSNN () is globally exponentially stable in the mean square sense. For τ = , τ =  and
α = ., by [], the upper bound of the time-varying delay is , and by Theorem . in
this paper, we obtain τM = . What is more, when τ = , τ = , and α = ., α = .,
α = ., α = ., and by Theorem . in this paper, we can get that the upper bound
of the time-varying delay τM is , , , , respectively. While the LMIs (), () in []
have no feasible solutions. The further comparison is listed in Table , fromwhich one can
see that the criterion proposed in Theorem . is less conservative than those obtained
in []. One can see that the criterion proposed in Theorem . is less conservative than
those obtained in [–] when the probability distribution of the time delay is ignored.

Remark  From this example, we can see that stability conditions in this paper are de-
pendent on time delays themselves, the variation interval and the distribution probability
of the delay, that is, not only dependent on the time-delay interval, which distinguishes
them from the traditional delay-dependent stability conditions.

5 Conclusions
In this paper, the robust delay-probability-distribution-dependent stochastic stability
problem for a class of DSNNs with parameter uncertainties has been studied. In terms of
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LMIs technique, and combinedwith Lyapunov stable theory, a new augmented Lyapunov-
Krasovskii functional has been constructed, and some novel sufficient conditions ensuring
robustly globally exponentially stable in the mean square sense have been derived. Com-
paredwith some previous works established in the literature cited therein, the new criteria
derived in this paper are less conservative. The numerical example has been demonstrated
to show the validity of these new sufficient conditions.
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