
Meta-heuristically Seeded Genetic Algorithm for
Independent Job Scheduling in Grid Computing

Muhanad Tahrir Younis, Shengxiang Yang, and Benjamin Passow

Centre for Computational Intelligence (CCI), School of Computer Science and
Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, UK

p14017957@my365.dmu.ac.uk, syang@dmu.ac.uk, benpassow@ieee.org

Abstract. Grid computing is an infrastructure which connects geo-
graphically distributed computers owned by various organizations allow-
ing their resources, such as computational power and storage capabilities,
to be shared, selected, and aggregated. Job scheduling problem is one of
the most difficult tasks in grid computing systems. To solve this problem
efficiently, new methods are required. In this paper, a seeded genetic al-
gorithm is proposed which uses a meta-heuristic algorithm to generate its
initial population. To evaluate the performance of the proposed method
in terms of minimizing the makespan, the Expected Time to Compute
(ETC) simulation model is used to carry out a number of experiments.
The results show that the proposed algorithm performs better than other
selected techniques.

Keywords: meta-heuristic algorithms; seeded Genetic Algorithm; Ant
Colony Optimization; job scheduling; grid computing; makespan

1 Introduction

Grid Computing has been defined as a type of parallel and distributed infrastruc-
ture which allows the geographically distributed autonomous and heterogeneous
resources to be shared, selected and aggregated dynamically depending on their
availability, capability, performance, cost, and users quality-of-service require-
ments. This infrastructure offers to its users the same processing capabilities
provided by supercomputers by creating a virtual supercomputer from connect-
ing various networked and loosely coupled computers together allowing their
resources to be shared among users. Computers, processing elements, software
applications, printers, network interfaces, storage space and data are examples
of resources. Middleware, computer software which provide basic services for re-
source management, security, monitoring, and so forth, are used to connect all
these resources to a network. Due to the fact that resources are owned by various
administrative organizations, local policies are defined to specify what is shared,
who is allowed to access what and when, and under what conditions. The Grid
architecture is based on the creation of Virtual Organizations (VOs), a set of
rules defined by individuals and institutions to control resource sharing [8]. By
sharing some or all of its resources, a physical organization can be part of one or

CORE Metadata, citation and similar papers at core.ac.uk

Provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228183624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


more VOs [10]. Grid Computing has been increasingly used by commercial and
non-commercial clients as a utility for solving scientific, complex mathematical,
and academic problems, as well as for diverse applications [9].

In grid computing, a key concern is job scheduling. In general, job scheduling
can be defined as the mapping of jobs to corresponding appropriate resources
in order to process them [13]. To evaluate the job scheduling performance, an
objective function should be defined such as maximizing resources utilization,
minimizing the makespan, and maximizing load balancing [20]. The schedulers
efficiency strongly relays on the algorithm applied to do the scheduling. Different
algorithms could be used to do the scheduling which varies from simple heuristic
methods to meta-heuristic methods. However, to enhance the overall perfor-
mance of the grid, the meta-heuristic approaches are more likely preferred [19].

Job scheduling in grid computing is known to be a NP-complete optimiza-
tion problem, and hence, many meta-heuristic methods, which are capable of
searching large search spaces very efficiently and provide optimal or near op-
timal solutions, have been proposed [2]. One of these methods is Ant Colony
Optimization (ACO) which is a search algorithm that mimics the behavior of
ants in searching for a path between their nest and a source of food [5]. While
ants move back and forth from their colony to a source of food, they leave a
substance called pheromone on the ground. This substance can be sensed by
other ants and this allows indirect communications among them. Ants which
find the shortest path to the source of food will, then, return back to their
colony earlier than ants with longer paths, which means that the shortest path
has been marched over more than other paths and its pheromone density will
be higher. Ants will choose the path with the highest pheromone concentration,
i.e. the path with high pheromone levels will attract more ants and will contain
even more pheromone. However, if this path remains after the consumption of
food, it would seriously obstruct the ants’ ability to find food. To cope with
this situation, pheromone trails evaporate over time, which is a mechanism to
forget old decisions, is used [7]. The ACO algorithm has been used to solve var-
ious NP-complete optimization problems such as Travelling Salesman problem,
assignment problem, graph coloring, and job-shop scheduling successfully [22].
As a result, the ACO algorithm is a good candidate for job scheduling in Grid
computing.

In addition to ACO, there are many other meta-heuristic methods which have
been proposed to solve the problem of job scheduling in grid computing. One
of these methods is Genetic algorithm (GA), a population-based meta-heuristic
search method which is inspired by the evolution of living beings. The traditional
GA starts with an initial population, a group of solutions, then seeks to find
the approximately best solution by applying selection, crossover and mutation
operators. The simplest way to generate the initial population is the random
method. However, the quality of the final solution found by GA could be effected
by the quality of the initial solution as generating an initial population randomly
may cause the situation where the population has more individuals with worst
quality and, sometimes, infeasible solutions than best quality solutions which



means more time is required to find an optimal solution, more generations are
required to evolve best solution, and the convergence rate is reduced. Therefore,
a new method to generate the initial generation is needed and actually, several
studies have been suggested in this context [21].

A study presented by [23] developed several versions of GA and studied the
different configuration issues of GA to solve the Travelling Salesman Problem
(TSP) and claimed that using heuristic methods to seed the initial population
can improve significantly the efficiency of GA. An improved GA for the rectilinear
Steiner problem by [14] proposed a hybrid seeding population technique. The
author has compared the efficiency of the proposed seeding technique with the
random technique of generating the initial population of GA and concludes that
the seeding technique significantly improves the performance. The authors in [11]
have proposed a new method to generate the initial population of GA for the
optimization of 2d and 3d truss structures. Their work has examined the effect of
seeding the initial population on the performance of the GA in terms of capturing
the global optimum and concluded that the proposed seeding method reduces
the number of generations needed to find the optimal solution and enhances the
convergence capability which consequently enhances the overall performance of
the GA.

In this work, a GA for static independent job scheduling problem in grid
computing is proposed. The proposed algorithm uses a meta-heuristic algorithm,
which is ACO, to seed its initial population. The work focuses on minimizing
the makespan and the Expected Time to Compute (ETC) model is used to
test the performance. The performance of the proposed GA has been compared
with Min-Min heuristic, GA with random initial generation, GA with initial
population seeded by Min-Min heuristic, and ACO.

The rest of the paper is organized as follows. Section 2 presents the related
work on ACO and GA in solving the problem of job scheduling in grid computing.
The simulation model used to test the performance of the proposed method is
described in section 3. Section 4 explains the use of ACO for job scheduling
in grid computing while section 5 describes the proposed method. Section 6
presents the results of applying the proposed GA in grid computing. Finally, the
conclusions and future works are provided in Section 7.

2 Related work

An ant colony optimization based scheduler for job scheduling in grid comput-
ing was proposed by [16]. Minimization of the total job waiting time was the
main goal of the proposed scheduler which consists of four steps. The proposed
scheduler used local update and global update rules to update the pheromone
value on each resource. In addition, the scheduler has used the Completion Time
(CT), which is the time a machine needs to finish executing a job measured as
clock time. The authors defined a grid environment in which jobs arrive to the
system at different times, the availability of resources is regularly changing, one
job could be processed by each processor per unit time and jobs are independent



of each other. In the study, the performance of ACO based scheduler has been
compared with First Come First Serve (FCFS), Earliest Due Date (EDD) and
Earliest Release Date techniques (ERD). The results showed that ACO has the
best average-case of the waiting time.

A more efficient ACO-based grid scheduling algorithm was introduced by [18].
The developed scheduler has modified the original ACO algorithm presented in
[5] by changing the basic pheromone updating rule. This modification increased
efficiently the algorithm performance in terms of makespan compared to the
original ACO.

The authors in [22] have developed a hybrid algorithm to improve the per-
formance of other similar techniques described in [3]. The hybrid algorithm has
combined ACO with local search. The results show that the use of a local search
with ACO increases the quality of the solution.

ACO is not the only algorithm used to solve the problem of job scheduling in
grid computing. The literature shows that there are many other meta-heuristic
methods which have been suggested in this field. One of these methods is Genetic
Algorithm (GA), a population-based heuristic search method which is inspired
by the evolution of living beings. GA starts with an initial population, which is a
group of solutions usually generated randomly, and then seeks to find the approx-
imately best solution by applying selection, crossover and mutation operators.
GA has been quite used for solving many combinatorial optimization problems.
Eleven static heuristic methods have been applied in [3] to solve the problem of
job scheduling in heterogeneous environment by minimizing the makespan. The
experimental results show that GA outperforms the other ten methods used in
the study. The authors used a population of 200 individuals which is generated
either randomly or by seeding the population with one individual generated
using Min-Min heuristic method [12] and 199 individuals generated randomly.

A study proposed by [4] presented the use of GA for efficient multi-objective
job scheduling in grid computing systems. To introduce diversity, two heuristics
methods, which are Longest Job to Fastest Resource Shortest Job to Fastest
Resource (LJFR- SJFR) [1] and Minimum Completion Time (MCT) [17], have
been used beside the random method to initialize the initial population. The
authors considered two encoding schemes, namely the direct and the permutation
methods, and implemented several GA operators.

A heuristic method called Min-Max has been proposed in [13] for job schedul-
ing in heterogeneous environments. The performance of the proposed method
has been compared with five popular heuristics which are: Min-Min, Max-Min,
LJFR-SJFR, sufferage, and WorkQueue. The authors investigated the effect of
using these heuristics for initializing simulated annealing (SA) and found that
the Min-Min and Min-Max heuristics are more efficient than others.

3 Simulation model

In order to simulate several heterogeneous scheduling scenarios in a realistic
way and to allow a fair comparison of the presented methods, a well-known



benchmark has been used. In this study, the Expected Time to Compute (ETC)
benchmark simulation model is used which has been introduced in [3] to address
the problem of static scheduling algorithms for Heterogeneous Computing (HC)
such as grid computing. The expected execution time of the jobs on each ma-
chine has been assumed to be available in advance in a two dimensional array.
This assumption is realistic since it is easy to gather information about the jobs
requirements and the computation power of resources from the users, by predi-
cations or from historic data [25]. To capture the various characteristics of HC
environments, the model defines three different types of metrics: consistency, job
heterogeneity, and resource heterogeneity. A matrix is said to be consistent if it
contains a resource Rn which is capable of processing a job Jk faster than an-
other resource in the system Rm, and Rn processes all other jobs Jt faster than
Rm. If a resource Rn executes some jobs faster than Rm and some slower, then
the matrix is said to be inconsistent. A semi consistent matrix is an inconsistent
matrix which has a sub matrix of a consistent matrix. Job heterogeneity models
the statistical distribution for jobs execution times with two values high or low.
Resource heterogeneity models the distribution when executing the same job in
all machines, and also has two values high or low. Therefore, we need 12 dis-
tinct combinations of ETC matrix to consider all these various characteristics.
Table 1 shows a 15 x 10 subset of the ETC matrix with semi-consistent, low job
heterogeneity and low resource heterogeneity. The results provided in this study
used ETC matrices of size 512 x 16.

The problem description under the ETC model is defined as follows:

1. A number of jobs, n, that has to be scheduled. These jobs are indepen-
dent to each other, any job can be processed by any resource, and are non-
preemptive, which means that a job must be processed entirely by a single
resource.

2. A number of resources, m, to process the submitted set of independent jobs.
These resources are heterogeneous.

3. The ETC matrix of size n x m, where ETC[i][j] represents the estimated
time for executing the job i in the resource j.

The job scheduling problem in grid computing is known to be multi-objective,
therefore, several objective functions can be considered for this problem such
as makespan, load balancing, and flowtime [24]. In this study, we consider the
minimization of makespan, which is defined as the finishing time of the latest
job and can be calculated by Equation (1).

makespan = mins∈Solutionsmaxj∈Jobs(Fj) (1)

where Solutions is the set of all possible solutions and Jobs is the set of all jobs
submitted to the system and Fj represents the time when job j is finished [15].

4 Applying ACO to the job scheduling problem

ACO has been applied for several problems closely related to job scheduling
problem in grid computing. Therefore, it seems an appropriate candidate in this



Table 1. A 15 x 10 subset of the Expected Time to Compute (ETC) matrix with
semi-consistent, low job heterogeneity and low resource heterogeneity. ri (1 ≤ i ≤ 10)
is a resource

job r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
j1 4.3 135.9 194.5 223.8 303.0 346.6 418.4 419.0 487.5 516.7
j2 353.5 472.9 478.4 117.5 338.8 573.7 431.4 655.5 545.8 207.0
j3 17.2 18.9 24.5 33.2 39.7 47.2 58.4 62.1 76.2 83.5
j4 182.2 358.3 180.1 539.6 511.8 474.3 131.0 89.7 571.8 363.1
j5 55.3 99.7 107.0 198.0 219.1 237.3 238.0 244.3 306.8 353.1
j6 405.8 88.7 59.9 82.9 442.6 352.3 62.9 207.1 49.5 413.2
j7 55.8 79.0 84.7 110.2 143.9 176.0 180.7 182.5 189.3 203.8
j8 166.6 334.4 310.1 194.7 88.5 349.0 310.6 118.6 124.6 110.5
j9 108.2 119.3 138.7 144.7 169.7 193.5 223.4 248.1 293.3 312.9
j10 109.8 127.7 30.2 125.0 136.7 56.3 92.7 25.5 89.7 187.8
j11 114.1 118.3 121.8 318.0 332.2 391.5 391.7 477.3 541.0 568.9
j12 186.5 635.7 727.6 308.9 747.8 563.8 146.4 485.3 728.3 205.8
j13 212.8 216.0 248.4 269.2 306.1 381.9 413.4 439.2 486.6 582.6
j14 250.6 70.4 106.1 136.2 163.5 100.1 211.3 108.0 113.5 174.7
j15 114.9 213.2 233.7 261.5 280.4 317.3 354.6 385.0 453.0 513.1

environment. An ACO-based scheduler is introduced in this section which follows
the ACO algorithm design explained in [6].

The first step in any ACO algorithm is to determine what information the
pheromone trail encodes. The pheromone trail allows the ants to communicate
indirectly to each other and share useful information about optimal solutions.
Since we have n jobs to be scheduled into m resources, a pheromone matrix, τ ,
of size n x m is needed in which the value of τ [i][j] represents the favorability
of assigning job i to resource j. In addition to the information encoded in the
pheromone trial, the ants use heuristic information to build their solutions. In
this study, the following heuristic has been used:

ηij =
1

free[j]
(2)

where the function free[j] denotes the time when machine j will be free.
If free[j] is small, ηij will be a very large value. Thus if a resource is free

earlier, it will be more desirable.
To measure the quality of the solutions, a fitness function must be defined.

As mentioned earlier, the makespan is considered in this study. The makespan
of a solution is a good indicator of the general throughput of the grid system.
Small value of makespan means that the algorithm is finding efficient mapping
of jobs to resources.

To allow the communication among ants about the current states of the
resources, a rule for updating the pheromone trial is needed and it is defined by
Equation (3):

τij = ρ ∗ τij +∆τij (3)



Algorithm 1 The ACO-based scheduler

Step 1: While (Number of generation ≤ Maximum number of generations)
do steps 2-5.

Step 2: Initialization
1. Let n be the number of jobs, m be the number of resources and k be the number

of ants.
2. Initialize the pheromone deposit value τijto a small value.
3. Let free[0..m-1]=0.
4. Initialize the pheromone evaporation.

Step 3: For each ant A, do the following:
1. Randomly select the job-resource pair (i, j) and add it to the scheduled list.
2. For all unscheduled jobs, do the following:

a. description free[j] = free[j]+ETC[i, j].
b. Calculate the heuristic function using Equation (2).
c. Calculate the probability matrix using Equation (6).
d. Determine the highest ρxy value.
e. Select the next job-resource pair (i=x, j=y) and add it to the scheduled list.

Step 4: Find the best solution
1. Calculate the makespan of all solutions using Equation (1).
2. The best solution is the one with the minimum makespan.

Step 5: Pheromone update
1. Calculate Fk using Equation (5).
2. Calculate ∆τij using Equation (4).
3. Calculate the new pheromone trail using Equation (3).

where i, j ∈ the best solution, ρ (0 < ρ ≤ 1) is the decay parameter which is
used to allow the ants to forget poor information and ∆τij is the amount of
pheromone deposit to the path and is defined by Equation (4) as:

∆τij =
1− ρ
Fk

(4)

where
Fk = max(free[i]) (5)

As mentioned earlier, the ants use both the information encoded in the
pheromone trial and the heuristic function to build their solutions. Each ant
starts with two lists: scheduled list which is empty and unscheduled list which
contains n jobs. The first job-resource mapping will be selected randomly. The
heuristic function ηij , then, will find the best resources available to process the
unscheduled jobs. A job x is selected probabilistically to be processed by resource
y using the transition rule defined by Equation (6) as follows:

pxy =
[τxy]α ∗ [ηxy]β ∗ 1

ETC[x,y]∑
[τxy]α ∗ [ηxy]β ∗ 1

ETC[x,y]

(6)

where α and β are two parameters used to define the relative weight of the
pheromone and the heuristic respectively.



This process is repeated until all unscheduled jobs have been mapped and
that represents a complete solution. Each ant in the colony does the same proce-
dure to build a solution. The colony size, which is the number of ants, is k. The
pheromone trail update rule is applied as described in Equation (3) when all k
ants built their solutions. Similar to other meta-heuristics algorithms, ACO has
many parameters that need to be tuned. To achieve an efficient performance,
these parameters should be chosen carefully. The maximum number of genera-
tions is 5, each generation (or colony) has 50 ants. The decay parameter ρ was 0.5
while α = 2 and β = 30. Algorithm 1 shows the complete ACO-based scheduler
for job scheduling in grid computing.

5 Applying GA to the job scheduling problem

Genetic Algorithm (GA), a population-based heuristic search method which is
inspired by natural evolution. GA starts with an initial population, a group of
solutions usually generated randomly, then seeks to find the approximately best
solution by applying selection, crossover and mutation operators. GA has been
quite used for solving many optimization problems closely related to the job
scheduling problem.

In this study, we used the GA-based scheduler proposed in [3] to solve the
problem of job scheduling in grid computing. The scheduler main steps are ex-
plained as follows:

1. The solution representation: the authors used the direct representation to
encode the individuals. In direct representation, each individual is repre-
sented as a list called solution of size equals to the number of jobs. The
value of solution[x] represent the resource where job x is allocated. There-
fore, the values in this list are integers in the range [1, m], where m is the
total number of resources.

2. The initial generation: they used a population of 200 individuals which is
generated either randomly or by seeding the population with one individ-
ual generated using the Min-Min heuristic method [12] and 199 individuals
generated randomly.

3. The fitness function: the makespan was used to evaluate the fitness of indi-
viduals.

4. Create a new generation by applying GA operators:

a. The selection operator: the rank-based roulette wheel method has been
used. To guarantee that the best solution remains in the population, the
elitist generational was implemented.

b. The crossover operator: the one-point scheme is used with a probability
of 0.6.

c. The mutation operator: the mutation is done with a probability of 0.4 by
randomly select an individual then randomly select a job and reassign it
to a different resource.



5. Repeat from step 3 until the stopping criteria are true. The proposed GA
stops when one of the following conditions is occurred: (a) 1000 generations,
(b) the elite individual remain the same for 150 iterations, or (c) all individ-
uals have the same solution.

The Min-Min heuristic [12] used in generating the initial population starts
by computing the minimum completing time CT[i,j] for all jobs and resources.
Then finds the job x with minimum CT[i, j] and allocates it to the resource that
obtains it.

In this study, a meta-heuristic method, which is ACO, will be used to seed
the initial population of GA for solving the problem of static independent job
scheduling in grid computing. The proposed method will run ACO first for a
specific number of iterations. The solutions found by ACO, then, will be used
to seed the initial population of GA together with the random method. Three
versions of the GA proposed by [3] are then considered here to study the effects
of seeding the initial population of GA. All the three versions follow the main
steps explained above. The only difference is the way the initial population is
generated, The first version, called Random-GA, uses the random method to
generate the initial population while the second version, called Min-GA, gener-
ates the initial population by seeding it with one individual generated using the
Min-Min heuristic and 199 individuals generated randomly. The third version,
called ACO-GA, runs first the ACO meta-heuristic algorithm, then uses the 50
solutions found by the ACO and 150 individuals generated randomly to seed the
initial population.

6 Experiments and Results

Experiments have been carried out using an Intel T2080 CPU @ 1.73GHz with
2GB RAM and all programs were written in Java language. To obtain the best,
worst and median values, each algorithm was executed 100 times for each in-
stance of the 12 ETC matrices. Table 2 provides the actual makespan while figure
1 shows the median makespan values. In the table, the first column represents
the instance name, the second column represents the type of the results, namely
Best, Worst or Median, the third, fourth, fifth, sixth and seventh columns repre-
sent the makespan found by Min-Min, Rnd-GA, Min-GA, ACO, and ACO-GA.
The best results are indicated in bold.

In the table of results, the following abbreviation has been used to identify
the type of ETC matric: x-y-zzww, where:

- x represents the type of probability distribution. In this study, the uniform
distribution (u) has been used only.

- y represents the type of consistency, which has one of: c: consistent, i: incon-
sistent, s: semi-consistent.

- description zz represents the job heterogeneity, which could be either high
(hi) or low (lo).



Table 2. The best, worst, and median makespan results

Instance B/W/M Min Rnd-GA Min-GA ACO ACO-GA

Best 16613907.00 11081565.00 9050105.00 8570055.00 8095185.00
u-c-hihi Worst 16613907.00 12423588.00 9830633.00 8845919.00 8355396.00

Median 16613907.00 11709830.00 9495092.00 8680503.00 8210842.00

Best 254880.70 193386.30 163221.10 159259.60 155335.40
u-c-hilo Worst 254880.70 201751.70 171102.40 161058.40 157831.00

Median 254880.70 196916.15 166404.4 159787.10 155945.10

Best 558377.30 357089.90 295008.20 279429.20 263120.30
u-c-lohi Worst 558377.30 400989.20 317053.70 289153.40 272172.70

Median 558377.30 374781.20 305801.80 282148.90 266419.40

Best 7789.00 6463.50 5496.90 5358.20 5221.90
u-c-lolo Worst 7789.00 6758.30 5684.00 5499.60 5289.60

Median 7789.00 6614.10 5574.75 5456.90 5246.45

Best 3943275.90 6074364.30 3239078 3253050.00 3056285.00
u-i-hihi Worst 3943275.90 7653952.60 3488099.00 3385014.00 3232376.00

Median 3943275.90 7052776.30 3358354.00 3314572.00 3132457.00

Best 85887.20 143994.60 77287.60 78051.70 75524.60
u-i-hilo Worst 85887.20 176494.20 79323.70 80282.70 78018.50

Median 85887.20 160123.45 78262.25 79462.65 76563.10

Best 138091.40 211945.90 110578.30 111224.20 104657.00
u-i-lohi Worst 138091.40 266207.60 118082.70 115520.40 111124.30

Median 138091.40 238080.55 114355.80 113785.90 107216.20

Best 3112.20 4538.00 2547.10 2594.90 2484.20
u-i-lolo Worst 3112.20 5773.00 2755.60 2646.40 2552.70

Median 3112.20 5182.50 2674.15 2621.20 2513.45

Best 10591575.00 8580789.60 6534393.00 6044180.00 5578565.00
u-s-hihi Worst 10591575.00 11212404.00 7950509.00 6405586.00 5877259.00

Median 10591575.00 9492592.40 7191440.00 6133150.00 5707337.00

Best 150658.20 152887.30 115180.30 108923.20 104959.00
u-s-hilo Worst 150658.20 192228.80 125965.10 111047.00 108439.20

Median 150658.20 175001.90 120388.80 110017.70 106000.80

Best 317909.00 241510.20 188685.70 169244.60 158247.80
u-s-lohi Worst 317909.00 328735.10 236169.00 180159.50 168558.20

Median 317909.00 282073.55 210498.70 175702.80 161362.30

Best 5357.20 5320.30 3927.20 3717.50 3589.90
u-s-lolo Worst 5357.20 6600.50 4350.20 3792.40 3681.40

Median 5357.20 5807.75 4167.85 3763.40 3632.85

- description ww represents the resource heterogeneity, which could be either
high (hi) or low (lo).

The results show clearly that ACO-GA outperforms the other approaches
for all instances of ETC matrix tested in finding the minimum makespan. The
performance order for all cases of the approaches used from best to worst was:
ACO-GA, ACO, Min-GA, Rnd-GA, and then Min-Min. ACO provided the sec-
ond best performance as it outperformed Min-GA, Rnd-GA, and Min-Min in



0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

Min Rnd-GA Min-GA ACO ACO-GA

M
ak

e
sp

an

hihi

Uniform, inconsistent

Uniform, semi-consistent

Uniform, consistent

0

50000

100000

150000

200000

250000

300000

Min Rnd-GA Min-GA ACO ACO-GA

M
ak

e
sp

an

hilo

Uniform, inconsistent

Uniform, semi-consistent

Uniform, consistent

0

100000

200000

300000

400000

500000

600000

Min Rnd-GA Min-GA ACO ACO-GA

M
ak

e
sp

an

lohi

Uniform, inconsistent

Uniform, semi-consistent

Uniform, consistent

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Min Rnd-GA Min-GA ACO ACO-GA

M
ak

e
sp

an

lolo

Uniform, inconsistent

Uniform, semi-consistent

Uniform, consistent

Fig. 1. Median makespan obtained by five methods in four different cases

consistent and semi-consistent cases. However, Min-GA performed better than
ACO, GA, and Min-Min in some of inconsistent cases. The results also show
the significant effect of seeding the initial population of GA either in the case
of Min-GA which outperforms the normal Rnd-GA or in the case of ACO-GA
which outperforms all other approaches used in this study.

7 Conclusions and future work

One of the major difficult tasks in grid computing systems is job scheduling. An
efficient job scheduler will significantly improve the overall performance of grid
computing systems. Similar to scheduling problems in conventional distributed
systems, job scheduling in these systems is known to be NP-complete. However,
in grid computing systems job scheduling problem is much more complex due to
the fact that the jobs and resources in these environments have a high degree of
heterogeneity, the environment is dynamic, and the problem is multi-objective.
Therefore, the use of meta-heuristics, such as ACO and GA, is necessary to cope
in practice with its complexity and difficulty. GA is a robust search method that
has been used successfully to solve the problem of job scheduling in computa-



tional grid. However, the solution found by GA could be improved by providing
diversity in its initial population. One method to provide diversity is seeding the
initial population with solutions generated by heuristics. In this study, a meta-
heuristic method, which is ACO, has been used to seed the initial population of
GA for solving the problem of static independent job scheduling in grid comput-
ing. The proposed algorithm can find better mappings than other approaches
found in the literature in terms of minimizing the makespan. The ETC matrix
model has been used to examine the performance of the proposed method. The
experimental results show that the proposed method is outperforming the other
methods used in this study which are Min-Min heuristic, GA with an initial
population generated randomly, GA with an initial population generated using
Min-Min heuristic and random method, and ACO.

The proposed GA seems a promising approach to scheduling in grid com-
puting systems. However, there is much space for further improvements such as
adding another objective so that the problem will be multi-objectives, adding a
local search scheme to the proposed method and testing it in a dynamic envi-
ronment.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research
Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

1. Abraham, A., Buyya, R., Nath, B.: Natures heuristics for scheduling jobs on com-
putational grids. In: The 8th IEEE international conference on advanced computing
and communications (ADCOM 2000). pp. 45–52 (2000)

2. Alobaedy, M.M., Ku-Mahamud, K.R.: Scheduling jobs in computational grid using
hybrid acs and ga approach. In: Computing, Communications and IT Applications
Conference (ComComAp), 2014 IEEE. pp. 223–228. IEEE (2014)

3. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., et al.: A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous dis-
tributed computing systems. Journal of Parallel and Distributed computing 61(6),
810–837 (2001)

4. Carretero, J., Xhafa, F., Abraham, A.: Genetic algorithm based schedulers for grid
computing systems. International Journal of Innovative Computing, Information
and Control 3(6), 1–19 (2007)

5. Dorigo, M., Birattari, M., et al.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)
6. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms,

applications, and advances. In: Handbook of metaheuristics, pp. 250–285. Springer
(2003)

7. Eaton, J., Yang, S.: Dynamic railway junction rescheduling using population based
ant colony optimisation. In: Computational Intelligence (UKCI), 2014 14th UK
Workshop on. pp. 1–8. IEEE (2014)



8. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a new computing infrastructure.
Elsevier (2003)

9. Foster, I., Kesselman, C.: The history of the grid. computing 20(21), 22 (2010)
10. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable

virtual organizations. International Journal of High Performance Computing Ap-
plications 15(3), 200–222 (2001)

11. Guntsch, M., Middendorf, M.: Applying population based aco to dynamic opti-
mization problems. In: International Workshop on Ant Algorithms. pp. 111–122.
Springer (2002)

12. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Journal of the ACM (JACM) 24(2), 280–289 (1977)

13. Izakian, H., Abraham, A., Snasel, V.: Performance comparison of six efficient pure
heuristics for scheduling meta-tasks on heterogeneous distributed environments.
Neural Network World 19(6), 695 (2009)

14. Julstrom, B.A.: Seeding the population: improved performance in a genetic algo-
rithm for the rectilinear steiner problem. In: Proceedings of the 1994 ACM sym-
posium on Applied computing. pp. 222–226. ACM (1994)

15. Ko lodziej, J., Xhafa, F.: Enhancing the genetic-based scheduling in computational
grids by a structured hierarchical population. Future Generation Computer Sys-
tems 27(8), 1035–1046 (2011)

16. Lorpunmanee, S., Sap, M.N., Abdullah, A.H., Chompoo-inwai, C.: An ant colony
optimization for dynamic job scheduling in grid environment. International Journal
of Computer and Information Science and Engineering 1(4), 207–214 (2007)

17. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic map-
ping of a class of independent tasks onto heterogeneous computing systems. Journal
of Parallel and Distributed Computing 59(2), 107–131 (1999)

18. Mathiyalagan, P., Suriya, S., Sivanandam, S.: Modified ant colony algorithm for
grid scheduling. International Journal on Computer Science and Engineering 2(02),
132–139 (2010)

19. Nesmachnow, S., Alba, E., Cancela, H.: Scheduling in heterogeneous computing
and grid environments using a parallel chc evolutionary algorithm. Computational
Intelligence 28(2), 131–155 (2012)

20. Pacini, E., Mateos, C., Garino, C.G.: Distributed job scheduling based on swarm
intelligence: A survey. Computers & Electrical Engineering 40(1), 252–269 (2014)

21. Paul, P.V., Ramalingam, A., Baskaran, R., Dhavachelvan, P., Vivekanandan, K.,
Subramanian, R.: A new population seeding technique for permutation-coded ge-
netic algorithm: Service transfer approach. Journal of Computational Science 5(2),
277–297 (2014)

22. Ritchie, G., Levine, J.: A hybrid ant algorithm for scheduling independent jobs in
heterogeneous computing environments (2004)

23. Schmitt, L.J., Amini, M.M.: Performance characteristics of alternative genetic algo-
rithmic approaches to the traveling salesman problem using path representation:
An empirical study. European Journal of Operational Research 108(3), 551–570
(1998)

24. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid
scheduling problems. Future Generation Computer Systems 26(4), 608–621 (2010)

25. Xhafa, F., Kolodziej, J., Barolli, L., Fundo, A.: A ga+ ts hybrid algorithm for inde-
pendent batch scheduling in computational grids. In: Network-Based Information
Systems (NBiS), 2011 14th International Conference on. pp. 229–235. IEEE (2011)


