232 research outputs found

    Second-Harmonic and Sum-Frequency Imaging of Organic Nanocrystals with Photon Scanning Tunneling Microscope

    Get PDF
    Second-harmonic generation and sum-frequency generation with photon scanning tunneling microscopy and shear-force detection are used to map the nonlinear optical response and the surface topograph of N-(4-nitrophenyl)-(L)-prolinol crystals with a subdiffraction-limited resolution. The domain-size dependence of the spatial feature is obtained, which shows the local orientational distribution of the optical near field radiated by nonlinear nanocrystals and reveals the difference between nanoscopic and macroscopic second-order optical nonlinearities of molecular crystals

    DNA-Ormocer based biocomposite for fabrication of photonic structures

    No full text
    We report microfabrication of high quality photonicstructures such as two-dimensional photonic crystals and beam splitters from a high DNA load, photosensitive Ormocer nanocomposite. This nanocomposite combines the high dye loading capacity of DNA with the photopatternability and hardness of the Ormocer. The fabrication is performed with the two-photon lithography method. Detailed studies of the deoxyribonucleic acid distribution in the fabricatedstructures are conducted with Raman microscopy. We also demonstrate that the deoxyribonucleic acid based nanocomposite films cast on glass substrates are of high enough quality to support amplified spontaneous emission from dyes intercalated in the deoxyribonucleic acid

    Energy-dispersive x-ray fluorescence analysis of modern coloured glasses from Marinha Grande (Portugal)

    Get PDF
    X-Ray Spectrom. 2003; 32: 396–401The elemental composition (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Ba, Nd and Pb) of modern coloured glasses was obtained by energy-dispersive x-ray fluorescence (EDXRF) spectrometry. This nondestructive technique is frequently used in the analysis of historical glass objects. Two reference glasses were also measured to assess the overall accuracy of the EDXRF method. Reference and unknown glasses were analysed without any preparation. The coloured glass samples studied belong to the Glass Museum of Marinha Grande and were chosen from two distinct collections, which were characterized by the different concentrations of some elements (K, Ti, Cr, Mn, Fe, Ba and Pb). The determined major elements allowed the identification of two raw materials used in glass manufacture, sand and lime. Multivariate statistical analysis, namely principal component extraction, simplified the identification of some of the colouring chemical elements, associating them with the different colours of the glass objects

    SAWA experiment ? properties of mineral dust aerosol as seen by synergic lidar and sun-photometer measurements

    No full text
    International audienceWe propose a method of retrieving basic information on mineral dust aerosol particles from synergic sun-photometer and multi-wavelength lidar measurements as well as from the observations of lidar light depolarisation. We use this method in a case study of mineral dust episode in Central Europe. Lidar signals are inversed with a modified Klett-Fernald algorithm. Aerosol optical depth measured with the sun-photometer allows to reduce uncertainties in the inversion procedure through which we estimate vertical profile of aerosol extinction. Next we assume that aerosol particles may be represented by ensemble of randomly oriented, identical spheroids. Having calculated vertical profiles of aerosol extinction coefficients for lidar wavelengths, we compute the profiles of local Angstrom exponent. We use laser beam depolarisation together with the calculated Angstrom exponents to estimate the shapes (aspect ratios) and sizes of the spheroids. Numerical calculations are performed with the transition matrix (T-matrix) algorithm by M. Mishchenko. The proposed method was first used during SAWA measurement campaign in Warsaw, spring 2005, to characterise the particles of desert dust, drifting over Poland with a southern-eastern wind (13?14 April). Observations and T-matrix calculations show that mode radii of spheroids representative for desert aerosols' particles are in the range of 0.15?0.3 ?m, while their aspect ratios are lower than 0.7 or larger than 1.7

    Adult Hyalomma marginatum tick positive for Rickettsia aeschlimannii in Austria, October 2018

    Get PDF
    We report on a non-indigenous adult Hyalomma marginatum tick in Austria carrying the human pathogenic Rickettsia aeschlimannii; presumably introduced as a nymph via migratory birds and completed the moulting within the same year. It was negative for Crimean-Congo haemorrhagic fever virus, but the finding of R. aeschlimannii represents a potential threat for humans due to its zoonotic character. Awareness of invasive tick species and carried pathogens should be improved in central and northern Europe

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    2014 iAREA campaign on aerosol in Spitsbergen – Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    Get PDF
    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol’s size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient

    Variability in black carbon mass concentration in surface snow at Svalbard

    Get PDF
    Black carbon (BC) is a significant forcing agent in the Arctic, but substantial uncertainty remains to quantify its climate effects due to the complexity of the different mechanisms involved, in particular related to processes in the snowpack after deposition. In this study, we provide detailed and unique information on the evolution and variability in BC content in the upper surface snow layer during the spring period in Svalbard (Ny-Ålesund). A total of two different snow-sampling strategies were adopted during spring 2014 (from 1 April to 24 June) and during a specific period in 2015 (28 April to 1 May), providing the refractory BC (rBC) mass concentration variability on a seasonal variability with a daily resolution (hereafter seasonal/daily) and daily variability with an hourly sampling resolution (hereafter daily/hourly) timescales. The present work aims to identify which atmospheric variables could interact with and modify the mass concentration of BC in the upper snowpack, which is the snow layer where BC particles affects the snow albedo. Atmospheric, meteorological and snow-related physico-chemical parameters were considered in a multiple linear regression model to identify the factors that could explain the variations in BC mass concentrations during the observation period. Precipitation events were the main drivers of the BC variability during the seasonal experiment; however, in the high-resolution sampling, a negative association has been found. Snow metamorphism and the activation of local sources (Ny-Ålesund was a coal mine settlement) during the snowmelt periods appeared to play a non-negligible role. The statistical analysis suggests that the BC content in the snow is not directly associated to the atmospheric BC load
    corecore