127 research outputs found

    Dynamics of Quantum Dot Nuclear Spin Polarization Controlled by a Single Electron

    Full text link
    We present an experimental study of the dynamics underlying the buildup and decay of dynamical nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that the nuclei can be polarized on a time scale of a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize the nuclear spins and discuss two processes that can cause this depolarization. Conversely, in the absence of a quantum dot electron, the lifetime of nuclear spin polarization is on the time scale of a second, most likely limited by the non-secular terms of the nuclear dipole-dipole interaction. We can further suppress this depolarization rate by 1-2 orders of magnitude by applying an external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure

    Nonlinear dynamics of quantum dot nuclear spins

    Full text link
    We report manifestly nonlinear dependence of quantum dot nuclear spin polarization on applied magnetic fields. Resonant absorption and emission of circularly polarized radiation pumps the resident quantum dot electron spin, which in turn leads to nuclear spin polarization due to hyperfine interaction. We observe that the resulting Overhauser field exhibits hysteresis as a function of the external magnetic field. This hysteresis is a consequence of the feedback of the Overhauser field on the nuclear spin cooling rate. A semi-classical model describing the coupled nuclear and electron spin dynamics successfully explains the observed hysteresis but leaves open questions for the low field behaviour of the nuclear spin polarization.Comment: 7 pages, 4 figure

    Resolved sidebands in a strain-coupled hybrid spin-oscillator system

    Get PDF
    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystalline diamond cantilevers with embedded Nitrogen-Vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding ten MHz under mechanical driving and show that our system has the potential to reach strong coupling. Our novel hybrid system forms a resource for future experiments on spin-based cantilever cooling and coherent spin-oscillator coupling.Comment: 4 pages, 4 figures and supplementary information. Comments welcome. Further information under http://www.quantum-sensing.physik.unibas.ch

    Magnetometry with nitrogen-vacancy defects in diamond

    Get PDF
    The isolated electronic spin system of the Nitrogen-Vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of "NV magnetometry". It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.Comment: Review article, 28 pages, 16 figure

    Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach

    Full text link
    The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure

    A low-loss, broadband antenna for efficient photon collection from a coherent spin in diamond

    Get PDF
    We report the creation of a low-loss, broadband optical antenna giving highly directed output from a coherent single spin in the solid-state. The device, the first solid-state realization of a dielectric antenna, is engineered for individual nitrogen vacancy (NV) electronic spins in diamond. We demonstrate a directionality close to 10. The photonic structure preserves the high spin coherence of single crystal diamond (T2>100us). The single photon count rate approaches a MHz facilitating efficient spin readout. We thus demonstrate a key enabling technology for quantum applications such as high-sensitivity magnetometry and long-distance spin entanglement.Comment: 5 pages, 4 figures and supplementary information (5 pages, 8 figures). Comments welcome. Further information under http://www.quantum-sensing.physik.unibas.c

    Knight Field Enabled Nuclear Spin Polarization in Single Quantum Dots

    Full text link
    We demonstrate dynamical nuclear spin polarization in the absence of an external magnetic field, by resonant circularly polarized optical excitation of a single electron or hole charged quantum dot. Optical pumping of the electron spin induces an effective inhomogeneous magnetic (Knight) field that determines the direction along which nuclear spins could polarize and enables nuclear-spin cooling by suppressing depolarization induced by nuclear dipole-dipole interactions. Our observations suggest a new mechanism for spin-polarization where spin exchange with an electron reservoir plays a crucial role. These experiments constitute a first step towards quantum measurement of the Overhauser field.Comment: 5 pages, 3 figure

    Parabolic diamond scanning probes for single spin magnetic field imaging

    Full text link
    Enhancing the measurement signal from solid state quantum sensors such as the nitrogen-vacancy (NV) center in diamond is an important problem for sensing and imaging of condensed matter systems. Here we engineer diamond scanning probes with a truncated parabolic profile that optimizes the photonic signal from single embedded NV centers, forming a high-sensitivity probe for nanoscale magnetic field imaging. We develop a scalable fabrication procedure based on dry etching with a flowable oxide mask to reliably produce a controlled tip curvature. The resulting parabolic tip shape yields a median saturation count rate of 2.1 ±\pm 0.2 MHz, the highest reported for single NVs in scanning probes to date. Furthermore, the structures operate across the full NV photoluminescence spectrum, emitting into a numerical aperture of 0.46 and the end-facet of the truncated tip, located near the focus of the parabola, allows for small NV-sample spacings and nanoscale imaging. We demonstrate the excellent properties of these diamond scanning probes by imaging ferromagnetic stripes with a spatial resolution better than 50 nm. Our results mark a 5-fold improvement in measurement signal over the state-of-the art in scanning-probe based NV sensors.Comment: 8 pages, 6 figure

    Skyrmion morphology in ultrathin magnetic films

    Full text link
    Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including static disorder, based on a physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.Comment: 9 pages, 8 figures, including supplementary information
    corecore