32,811 research outputs found

    Effective Kinetic Theory for High Temperature Gauge Theories

    Full text link
    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature TT) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. We show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T)g(T) of high-temperature gauge theories [and all orders in 1/logg(T)11/\log g(T)^{-1}]. As previously proposed in the literature, a leading-order treatment requires including both 2222 particle scattering processes as well as effective ``1212'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.Comment: 40 pages, new subsection on soft gauge field instabilities adde

    Real-time Chern-Simons term for hypermagnetic fields

    Full text link
    If non-vanishing chemical potentials are assigned to chiral fermions, then a Chern-Simons term is induced for the corresponding gauge fields. In thermal equilibrium anomalous processes adjust the chemical potentials such that the coefficient of the Chern-Simons term vanishes, but it has been argued that there are non-equilibrium epochs in cosmology where this is not the case and that, consequently, certain fermionic number densities and large-scale (hypermagnetic) field strengths get coupled to each other. We generalise the Chern-Simons term to a real-time situation relevant for dynamical considerations, by deriving the anomalous Hard Thermal Loop effective action for the hypermagnetic fields, write down the corresponding equations of motion, and discuss some exponentially growing solutions thereof.Comment: 13 page

    Computing Early-time Dynamics in Heavy Ion Collisions: Status, Problems and Prospects

    Full text link
    We discuss some recent developments towards a quantitative understanding of the production and early-time evolution of bulk quark-gluon matter in ultrarelativistic heavy ion collisions.Comment: 10 pages, Invited Talk, Workshop on "QCD evolution of parton distributions: from collinear to non-collinear case", Newport News, VA, 8 - 9 Apr 201

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma

    Full text link
    In numerical simulations of nonabelian plasma instabilities in the hard-loop approximation, a turbulent spectrum has been observed that is characterized by a phase-space density of particles n(p)pνn(p)\sim p^{-\nu} with exponent ν2\nu\simeq 2, which is larger than expected from relativistic 222\leftrightarrow 2 scatterings. Using the approach of Zakharov, L'vov and Falkovich, we analyse possible Kolmogorov coefficients for relativistic (m4)(m \ge 4)-particle processes, which give at most ν=5/3\nu=5/3 perturbatively for an energy cascade. We discuss nonperturbative scenarios which lead to larger values. As an extreme limit we find the result ν=5\nu=5 generically in an inherently nonperturbative effective field theory situation, which coincides with results obtained by Berges et al.\ in large-NN scalar field theory. If we instead assume that scaling behavior is determined by Schwinger-Dyson resummations such that the different scaling of bare and dressed vertices matters, we find that intermediate values are possible. We present one simple scenario which would single out ν=2\nu=2.Comment: published versio

    Predicting the outcome of renal transplantation

    Get PDF
    ObjectiveRenal transplantation has dramatically improved the survival rate of hemodialysis patients. However, with a growing proportion of marginal organs and improved immunosuppression, it is necessary to verify that the established allocation system, mostly based on human leukocyte antigen matching, still meets today's needs. The authors turn to machine-learning techniques to predict, from donor-recipient data, the estimated glomerular filtration rate (eGFR) of the recipient 1 year after transplantation.DesignThe patient's eGFR was predicted using donor-recipient characteristics available at the time of transplantation. Donors' data were obtained from Eurotransplant's database, while recipients' details were retrieved from Charite Campus Virchow-Klinikum's database. A total of 707 renal transplantations from cadaveric donors were included.MeasurementsTwo separate datasets were created, taking features with <10% missing values for one and <50% missing values for the other. Four established regressors were run on both datasets, with and without feature selection.ResultsThe authors obtained a Pearson correlation coefficient between predicted and real eGFR (COR) of 0.48. The best model for the dataset was a Gaussian support vector machine with recursive feature elimination on the more inclusive dataset. All results are available at http://transplant.molgen.mpg.de/.LimitationsFor now, missing values in the data must be predicted and filled in. The performance is not as high as hoped, but the dataset seems to be the main cause.ConclusionsPredicting the outcome is possible with the dataset at hand (COR=0.48). Valuable features include age and creatinine levels of the donor, as well as sex and weight of the recipient

    Color-octet scalar effects on Higgs boson production in gluon fusion

    Full text link
    We compute the next-to-next-to-leading order QCD corrections to the gluon-fusion production of a Higgs boson in models with massive color-octet scalars in the (8,1)0{\bf (8,1)_0} representation using an effective-theory approach. We derive a compact analytic expression for the relevant Wilson coefficient, and explain an interesting technical aspect of the calculation that requires inclusion of the quartic-scalar interactions at next-to-next-to-leading order. We perform a renormalization-group analysis of the scalar couplings to derive the allowed regions of parameter space, and present phenomenological results for both the Tevatron and the LHC. The modifications of the Higgs production cross section are large at both colliders, and can increase the Standard Model rate by more than a factor of two in allowed regions of parameter space. We estimate that stringent constraints on the color-octet scalar parameters can be obtained using the Tevatron exclusion limit on Higgs production.Comment: 18 pages, 6 figures, 3 table

    Spatial interference from well-separated condensates

    Get PDF
    We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference between two condensates axially separated by up to 0.25 mm -- the largest separation observed with this kind of interferometer. Clear planar fringes are observed using standard (i.e. non-tomographic) resonant absorption imaging. The effect of a weak inverted parabola potential on fringe separation is observed and agrees well with theory.Comment: 4 pages, 5 figures - modified to take into account referees' improvement
    corecore