579 research outputs found
Josephson oscillation linewidth of ion-irradiated YBaCuO junctions
We report on the noise properties of ion-irradiated YBaCuO
Josephson junctions. This work aims at investigating the linewidth of the
Josephson oscillation with a detector response experiment at 132 GHz.
Experimental results are compared with a simple analytical model based on the
Likharev-Semenov equation and the de Gennes dirty limit approximation. We show
that the main source of low-frequency fluctuations in these junctions is the
broadband Johnson noise and that the excess () noise contribution
does not prevail in the temperature range of interest, as reported in some
other types of high-T superconducting Josephson junctions. Finally, we
discuss the interest of ion-irradiated junctions to implement frequency-tunable
oscillators consisting of synchronized arrays of Josephson junctions
High-Quality Planar high-Tc Josephson Junctions
Reproducible high-Tc Josephson junctions have been made in a rather simple
two-step process using ion irradiation. A microbridge (1 to 5 ?m wide) is
firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7-? film through
a gold mask such as the non-protected part becomes insulating. A lower Tc part
is then defined within the bridge by irradiating with a much lower fluence
through a narrow slit (20 nm) opened in a standard electronic photoresist.
These planar junctions, whose settings can be finely tuned, exhibit
reproducible and nearly ideal Josephson characteristics. This process can be
used to produce complex Josephson circuits.Comment: 4 pages, 5 figures, to be published in Applied Physics Letter
Study and optimization of ion-irradiated High-Tc Josephson nanoJunctions by Monte Carlo simulations
High Tc Josephson nanoJunctions (HTc JnJ) made by ion irradiation have
remarkable properties for technological applications. However, the spread in
their electrical characteristics increases with the ion dose. We present a
simple model to explain the JnJ inhomogeneities, which accounts quantitatively
for experimental data. The spread in the slit's width of the irradiation mask
is the limiting factor.Monte Carlo simulations have been performed using
different irradiation conditions to study their influence on the spread of the
JnJ charcateristics. A "universal" behavior has been evidenced, which allows to
propose new strategies to optimize JnJ reproducibility.Comment: 14 pages, 6 Figures. accepted in Journal of Applied Physic
Diagnosis and Management of Field Pollution in the Case of an Organochlorine Pesticide, the Chlordecone
International audienc
- …