5,867 research outputs found

    Galactic Potentials

    Get PDF
    The information contained in galactic rotation curves is examined under a minimal set of assumptions. If emission occurs from stable circular geodesic orbits of a static spherically symmetric field, with information propagated to us along null geodesics, observed rotation curves determine galactic potentials without specific reference to any metric theory of gravity. Given the potential, the gravitational mass can be obtained by way of an anisotropy function of this field. The gravitational mass and anisotropy function can be solved for simultaneously in a Newtonian limit without specifying any specific source. This procedure, based on a minimal set of assumptions, puts very strong constraints on any model of the "dark matter".Comment: A somewhat longer form of the final version to appear in Physical Review Letters.Clarification and further reference

    Optomechanically induced transparency and cooling in thermally stable diamond microcavities

    Full text link
    Diamond cavity optomechanical devices hold great promise for quantum technology based on coherent coupling between photons, phonons and spins. These devices benefit from the exceptional physical properties of diamond, including its low mechanical dissipation and optical absorption. However the nanoscale dimensions and mechanical isolation of these devices can make them susceptible to thermo-optic instability when operating at the high intracavity field strengths needed to realize coherent photon--phonon coupling. In this work, we overcome these effects through engineering of the device geometry, enabling operation with large photon numbers in a previously thermally unstable regime of red-detuning. We demonstrate optomechanically induced transparency with cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that these device will enable coherent optomechanical manipulation of diamond spin systems

    Gravitational Collapse of Dust with a Cosmological Constant

    Get PDF
    The recent analysis of Markovic and Shapiro on the effect of a cosmological constant on the evolution of a spherically symmetric homogeneous dust ball is extended to include the inhomogeneous and degenerate cases. The histories are shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.

    Experimental and analytical investigation of dynamic characteristics of extension-twist-coupled composite tubular spars

    Get PDF
    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results

    Single-crystal diamond low-dissipation cavity optomechanics

    Get PDF
    Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, realizing cavity optomechanical devices from high quality diamond chips has been an outstanding challenge. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to 2GHz2\,\text{GHz} frequency (fmf_\text{m}) mechanical resonances is observed. In room temperature ambient conditions, these resonances have a record combination of low dissipation (mechanical quality factor, Qm>9000Q_\text{m} > 9000) and high frequency, with Qmfm1.9×1013Q_\text{m}\cdot f_\text{m} \sim 1.9\times10^{13} sufficient for room temperature single phonon coherence. The system exhibits high optical quality factor (Qo>104Q_\text{o} > 10^4) resonances at infrared and visible wavelengths, is nearly sideband resolved, and exhibits optomechanical cooperativity C3C\sim 3. The devices' potential for optomechanical control of diamond electron spins is demonstrated through radiation pressure excitation of mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6 MHz coupling rates to diamond nitrogen vacancy center ground state transitions (6 Hz / phonon), and 105\sim10^5 stronger coupling rates to excited state transitions.Comment: 12 pages, 5 figure
    corecore