10,620 research outputs found

    Fabrication and surface characterization of composite refractory compounds suitable for thermionic converters

    Get PDF
    Thermal faceting was observed for the high index planes of LaB6. The (100), (110), and (111) planes were found to be the most thermodynamically stable faces in vacuum in a study of electrode materials for thermionic emitters. The properties of adsorbed carbon, cesium, and cesium-oxygen layers were investigated on LaB6 single crystal surfaces as well as on Zr/0/W(100) and W(100). Cesium was found to increase electron reflection near the collision threshold on LaB6(100) and W(100) and to decrease the reflection on Zr/0/W(100). This difference may be explained by the unusually high threshold reflection coefficient of Zr/0/W without adsorbed cesium

    Canonical Transformations and Path Integral Measures

    Full text link
    This paper is a generalization of previous work on the use of classical canonical transformations to evaluate Hamiltonian path integrals for quantum mechanical systems. Relevant aspects of the Hamiltonian path integral and its measure are discussed and used to show that the quantum mechanical version of the classical transformation does not leave the measure of the path integral invariant, instead inducing an anomaly. The relation to operator techniques and ordering problems is discussed, and special attention is paid to incorporation of the initial and final states of the transition element into the boundary conditions of the problem. Classical canonical transformations are developed to render an arbitrary power potential cyclic. The resulting Hamiltonian is analyzed as a quantum system to show its relation to known quantum mechanical results. A perturbative argument is used to suppress ordering related terms in the transformed Hamiltonian in the event that the classical canonical transformation leads to a nonquadratic cyclic Hamiltonian. The associated anomalies are analyzed to yield general methods to evaluate the path integral's prefactor for such systems. The methods are applied to several systems, including linear and quadratic potentials, the velocity-dependent potential, and the time-dependent harmonic oscillator.Comment: 28 pages, LaTe

    Conductivity in Jurkat cell suspension after ultrashort electric pulsing

    No full text
    Ultrashort electric pulses applied to similar cell lines such as Jurkat and HL-60 cells can produce markedly different results , which have been documented extensively over the last few years. We now report changes in electrical conductivity of Jurkat cells subjected to traditional electroporation pulses (50 ms pulse length) and ultrashort pulses (10 ns pulse length) using time domain dielectric spectroscopy (TDS). A single 10 ns, 150 kV/cm pulse did not noticeably alter suspension conductivity while a 50 ms, 2.12 kV/cm pulse with the same energy caused an appreciable conductivity rise. These results support the hypothesis that electroporation pulses primarily interact with the cell membrane and cause conductivity rises due to ion transport from the cell to the external media, while pulses with nanosecond duration primarily interact with the membranes of intracellular organelles. However, multiple ultrashort pulses have a cumulative effect on the plasma membrane, with five pulses causing a gradual rise in conductivity up to ten minutes post-pulsing

    Hybrid Decays

    Get PDF
    The heavy quark expansion of Quantum Chromodynamics and the strong coupling flux tube picture of nonperturbative glue are employed to develop the phenomenology of hybrid meson decays. The decay mechanism explicitly couples gluonic degrees of freedom to the pair produced quarks and hence does not obey the well known, but model-dependent, selection rule which states that hybrids do not decay to pairs of L=0 mesons. However, the nonperturbative nature of gluonic excitations in the flux tube picture leads to a new selection rule: light hybrids do not decay to pairs of identical mesons. New features of the model are highlighted and partial widths are presented for several low lying hybrid states.Comment: 13 pages, 1 table, revte

    Quantum Hamilton-Jacobi equation

    Get PDF
    The nontrivial transformation of the phase space path integral measure under certain discretized analogues of canonical transformations is computed. This Jacobian is used to derive a quantum analogue of the Hamilton-Jacobi equation for the generating function of a canonical transformation that maps any quantum system to a system with a vanishing Hamiltonian. A formal perturbative solution of the quantum Hamilton-Jacobi equation is given.Comment: 4 pages, RevTe

    Unquenching the Quark Model and Screened Potentials

    Full text link
    The low-lying spectrum of the quark model is shown to be robust under the effects of `unquenching'. In contrast, the use of screened potentials is shown to be of limited use in models of hadrons. Applications to unquenching the lattice Wilson loop potential and to glueball mixing in the adiabatic hybrid spectrum are also presented.Comment: 6 pages, 3 ps figures, revtex. Version to appear in J. Phys.

    Radiometer mission requirements for large space antenna systems

    Get PDF
    Requirements are defined for Earth observational microwave radiometry using large space antenna systems with apertures in the 50 to 200 meter range. General Earth observational needs, specific measurement requirements, orbital mission guidelines and constraints, and general radiometric requirements are defined. Specific measurements include soil moisture, water surface temperature, water roughness, ice boundaries, salinity, and water pollutants. Measurements with 10 to 1 km spatial resolution and 3 to 1 day temporal resolution are required

    Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube

    Get PDF
    The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively

    Nanosecond electric pulses penetrate the nucleus and enhance speckle formation

    No full text
    Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA–protein complexes

    Multibreather and vortex breather stability in Klein--Gordon lattices: Equivalence between two different approaches

    Get PDF
    In this work, we revisit the question of stability of multibreather configurations, i.e., discrete breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We present two methods that yield quantitative predictions about the Floquet multipliers of the linear stability analysis around such exponentially localized in space, time-periodic orbits, based on the Aubry band method and the MacKay effective Hamiltonian method and prove that their conclusions are equivalent. Subsequently, we showcase the usefulness of the methods by a series of case examples including one-dimensional multi-breathers, and two-dimensional vortex breathers in the case of a lattice of linearly coupled oscillators with the Morse potential and in that of the discrete Ď•4\phi^4 model
    • …
    corecore