research

Fabrication and surface characterization of composite refractory compounds suitable for thermionic converters

Abstract

Thermal faceting was observed for the high index planes of LaB6. The (100), (110), and (111) planes were found to be the most thermodynamically stable faces in vacuum in a study of electrode materials for thermionic emitters. The properties of adsorbed carbon, cesium, and cesium-oxygen layers were investigated on LaB6 single crystal surfaces as well as on Zr/0/W(100) and W(100). Cesium was found to increase electron reflection near the collision threshold on LaB6(100) and W(100) and to decrease the reflection on Zr/0/W(100). This difference may be explained by the unusually high threshold reflection coefficient of Zr/0/W without adsorbed cesium

    Similar works