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In this work, we revisit the question of stability of multibreather configurations, i.e., discrete
breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We
present two methods that yield quantitative predictions about the Floquet multipliers of the
linear stability analysis around such exponentially localized in space, time-periodic orbits, based
on the Aubry band method and the MacKay effective Hamiltonian method and prove that by
making the suitable assumptions about the form of the bands in the Aubry band theory, their
conclusions are equivalent. Subsequently, we showcase the usefulness of the methods through a
series of case examples including one-dimensional multi-breathers, and two-dimensional vortex
breathers in the case of a lattice of linearly coupled oscillators with the Morse potential and in
that of the discrete ϕ4 model.
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1. Introduction

Over the past two decades, there has been an explosion of interest towards the study of Intrinsic Localized
Modes (ILMs), otherwise termed discrete breathers [Flach & Willis, 1998; Flach & Gorbach, 2008]. This
activity has been, to a considerable extent, fueled by the ever-expanding applicability of these exponentially
localized in space and periodic in time modes. A partial list of the relevant applications includes their
emergence in halide-bridged transition metal complexes as e.g. in [Swanson et al., 1999], their potential
role in the formation of denaturation bubbles in the DNA double strand dynamics summarized e.g. in
[Peyrard, 2004], their observation in driven micromechanical cantilever arrays as shown in [Sato et al., 2006],
their investigation in coupled torsion pendula [Cuevas et al., 2009], electrical transmission lines [English
et al., 2008, 2010], layered antiferromagnetic samples such as those of a (C2H5NH3)2CuCl4 [English et al.,
2001b,a], as well in nonlinear optics [Lederer et al., 2008] and possibly in atomic physics of Bose-Einstein
condensates [Brazhnyi & Konotop, 2004; Morsch & Oberthaler, 2006] and most recently even in granular
crystals [Boechler et al., 2010].

In parallel to the above experimental developments in this diverse set of areas, there has been a
considerable progress towards the theoretical understanding of the existence and stability properties of
such localized modes summarized in a number of reviews and books; see e.g. [Flach & Willis, 1998; Flach
& Gorbach, 2008; Lederer et al., 2008; Aubry, 1997; Kevrekidis, 2009]. Arguably, one of the most important
developments in establishing the fundamental relevance of this area in coupled nonlinear oscillator chains
has been the work of MacKay and Aubry [MacKay & Aubry, 1994], which established the fact that if a single
oscillator has a periodic orbit (and relevant non-resonance conditions are satisfied), then upon inclusion of
a non-vanishing coupling between adjacent such oscillators, an ILM type waveform will generically persist.

Given the confirmation of persistence of such modes, naturally, the next question concerns their ro-
bustness under the dynamical evolution of the relevant systems, which is critical towards their experimental
observability. This proved to be a substantially more difficult question to answer in a quantitative fash-
ion, especially so for ILMs featuring multiple localized peaks, i.e., multi-site breathers (since single-site
breathers are typically stable in chains of linearly coupled anharmonic oscillators). Two principal theories
were proposed for addressing the stability of such periodic orbits, which correspond to discrete breather
states (and for identifying their corresponding Floquet multipliers). Interestingly, these originated inde-
pendently from the same pioneers which established (jointly) the existence of such modes in [MacKay &
Aubry, 1994]. In particular, the first theory was pioneered by Aubry in his seminal work of [Aubry, 1997]
and will go under the name Aubry Band (AB) theory, hereafter. The second one is an effective Hamiltonian
method which was introduced in a series of papers by MacKay and collaborators [Ahn & Sepulchre, 2001;
MacKay & Sepulchre, 2002; MacKay, 2004] (and will be termed accordingly MacKay Effective Hamiltonian
method (MEH)). The AB approach was adapted to the stability of discrete breathers and multibreathers
in the setting of Klein-Gordon (KG) lattices in the work of [Archilla et al., 2003]; see also [Cuevas et al.,
2005, 2011]. The MEH approach was applied to the same setting in the recent work of [Koukouloyannis &
Kevrekidis, 2009]; see also [Koukouloyannis et al., 2010].

Our aim in the present work is to unify the two methods by firmly establishing the equivalence of
the stability conclusions of the Aubry band and MacKay effective Hamiltonian methods. Subsequently, we
illustrate the usefulness and versatility of the methods, we apply them to a range of physically interesting
chains of oscillator model examples, such as the Morse potential which arises in the study of DNA bubbles
[Peyrard, 2004], as well as the ϕ4 potential which arises in applications in dusty plasmas [Koukouloyannis
& Kourakis, 2007, 2009], as well as in field theory, particle physics and elsewhere; see e.g. the recent
discussion of [Cubero et al., 2009] and the earlier review [Belova & Kudryavtsev, 1997] and references
therein. Our presentation is structured as follows. In section 2, we compare the two approaches and showcase
the equivalence of their conclusions. In particular, in section 2.2 we show that, although the “original”
AB method provides only qualitative results about the stability of multibreathers, if we make suitable
assumptions about the form of the bands we can also get quantitative results; i.e., we can calculate the
corresponding characteristic exponents. In section 3, we illustrate the use of the method by calculating the
characteristic exponents of multibreathers in some classic lattice configurations. In particular we study a
1D and 2D Klein-Gordon lattice with Morse on-site potential (subsections 3.1 and 3.2, respectively) and a



March 22, 2011 23:5 equiv14

Multibreather and vortex breather stability in Klein–Gordon lattices: Equivalence between two different approaches 3

ϕ4 1D chain (subsection 3.3). Finally, in section 4, we summarize our findings and present our conclusions.

2. Comparison between the two approaches

2.1. Preliminaries - Terminology

The relevant system under consideration will be a Klein-Gordon chain of oscillators with nearest-neighbor
interaction and Hamiltonian

H = H0 + ϵH1 =
∞∑

i=−∞

[
1

2
p2i + V (xi)

]
+

ϵ

2

∞∑
i=−∞

(xi − xi−1)
2 . (1)

As indicated previously, we will examine the two approaches (AB and MEH) for the linear stability
of multi-site breathers of this general class of systems. Both approaches are based on the notion of the
anti-continuum limit. In this limit (ϵ = 0) we consider n “central” oscillators moving in periodic orbits with
the same frequency ω (this will be our “multibreather” for ϵ ̸= 0 ), while the rest lie at the equilibrium
(x, ẋ) = (0, 0). For ϵ ̸= 0 some of these configurations, depending on the phase differences between the
oscillators, can be continued in order to provide multibreather solutions. It is interesting/relevant to note
here that while the MEH approach provides explicit conditions about which configurations can be continued
to finite ϵ (the critical points of the relevant effective Hamiltonian), the AB theory provides only stability
information for a given configuration (for which we already know otherwise that it should exist at finite ϵ).

The linear stability of these solutions is determined by the corresponding Floquet multipliers. For
a stable multibreather we require that all the multipliers lie on the unit circle. In the anti-continuum
limit these multipliers lie in three bundles. The two conjugate ones, that correspond to the non-central
oscillators, lie at e±iωT , while the third one lies at +1 and consists of n multiplier pairs, corresponding to
the central oscillators. Each pair of +1’s corresponds to the phase mode and growth mode of each isolated
excited oscillator, meaning that a small change in the initial phase or a small change in frequency leads to
an extremely close periodic solution, for the growth mode with slightly larger or smaller amplitude.

For ϵ ̸= 0, the non-central corresponding bundles split and their multipliers move along the unit circle
to form the phonon band, while the multipliers at unity can move along, either the unit circle (stability),
or along the real axis (instability). However, a pair of multipliers always continues at +1 corresponding to
the phase mode and growth mode of the whole system. Hence, the stability of the multibreather, at least
for small values of the coupling, is determined by the multipliers of the central oscillators. For larger values
of ϵ, a Hamiltonian-Hopf bifurcation can occur and destabilize an initially stable multibreather.

At this point, it is relevant to make a note in passing about the striking similarities between the
discussion above (at and near the anti-continuum limit) and that of the linear stability of standing waves
in the discrete nonlinear Schrödinger (DNLS) equation. In that case, due to the monochromatic nature of
the solutions and the U(1) invariance of the latter model, it is possible to directly consider the eigenvalues
associated with the standing wave solutions. However, there is a direct analogy with the spectrum of
the excited sites being associated with the eigenvalues at the origin at the anti-continuum limit and the
continuous spectrum lying at a finite distance from the spectral plane origin, and how at finite coupling
these zero eigenvalue pairs of the excited oscillators are the ones that may give rise to instability. In fact, it
turns out that even the conditions under which instability will ensue for multibreathers of the KG models
directly parallel the ones for multi-breathers (or multi-site standing waves) of the DNLS. The latter are
analyzed in considerable detail for 1−, 2− and 3− dimensional settings in [Pelinovsky et al., 2005b,a; Lukas
et al., 2008]; see also [Kevrekidis, 2009].

Returning to our KG setting, the MEH approach considers the Floquet multipliers given as λ =
exp(σT ), with T = 2π/ω, whereas in the AB approach, λ = exp(iθ). Then,

σ =
iθ

T
=

iθω

2π
(2)

Due to the symplectic character of the Floquet matrix if λ is a multiplier, so is λ−1, and due to its
real character if a λ is non real multiplier, so is λ∗, where the asterisk denotes the complex conjugate.
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Therefore, the corresponding multipliers come in complex quadruplets
(
λ, λ−1, λ∗, λ∗−1

)
if |λ| ̸= 1 and λ

is not real, or in pairs λ, λ−1 if λ is real, or λ, λ∗ if |λ| = 1 and not real. In addition, due to the time
translation invariance of the system there is always a pair of eigenvalues at +1. This has as a result that
both σi’s and θi’s, come also in quadruplets or pairs (σ,−σ) if σ is real, ((θ∗,−θ∗) if θ is imaginary) or
(σ∗,−σ∗) if σ is imaginary ((θ,−θ) if θ is real). In principle, the pairs could collide at a single value λ = 1
or λ = −1 if the system undergoes an exponential instability or a period-doubling bifurcation, respectively,
although there is always a pair of +1’s for the systems under study, as explained above.

2.2. The MEH approach

The MEH approach consists of constructing an effective Hamiltonian, whose critical points are in corre-
spondence with the periodic orbits (in our case multibreathers) of the original system. This method has
been originally proposed in [Ahn & Sepulchre, 2001; MacKay & Sepulchre, 2002; MacKay, 2004] and used
in the present form in [Koukouloyannis & MacKay, 2005]. The effective Hamiltonian can be constructed
as follows.

After considering the central oscillators we apply the action-angle canonical transformation to them.
Note that, in the anti-continuous limit, the motion of the central oscillators, in the action-angle variables,
is described by wi = ωit + wi0, Ji = const., for i = 0, . . . , n − 1. Where wi is the angle, wi0 is the initial
phase and Ji the action of the i-th central oscillator. For this kind of systems, the action of an oscillator
can be calculated as

Ji =
1

2π

∫ T

0
pi dxi =

1

2π

∫ T

0
[ẋi(t)]

2 dt. (3)

Since we are interested in a first order approach, the effective Hamiltonian can be written as Heff =
H0 + ϵ⟨H1⟩, by neglecting terms which do not contribute to the results in this order of approximation.
In this formula, ⟨H1⟩ is the average value of the coupling term of the Hamiltonian, over an angle in the
anticontinuous limit, which is equivalent to the average value of H1 over a period

⟨H1⟩ =
1

T

∮
H1dt.

This averaging procedure is performed in order to lift the phase degeneracy of the system. For the same
reason we introduce a second canonical transformation

ϑ = w0 A = J0 + . . .+ Jn−1

ϕi = wi − wi−1 Ii =

n−1∑
j=i

Jj i = 1, . . . , n− 1.
(4)

In these variables, the effective Hamiltonian reads

Heff = H0(Ii) + ϵ⟨H1⟩(ϕi, Ii). (5)

Note that, since the calculations are performed in the anticontinuous limit, the contribution of the non-
central oscillators has disappeared.

As we seldom know the explicit form of the transformation (x, p) 7→ (w, J), we use the fact that since
the motion of the central oscillators for ϵ = 0 is periodic, and possesses the t 7→ −t, x 7→ x, p 7→ −p
symmetry, it can be described by a cosine Fourier series xi(t) =

∑∞
k=0Ak(Ji) cos(kwi).

Note that at the anti-continuous limit, the orbits differ only in phase (i.e. ωi = ω ∀i), therefore Ji = J
and the coefficients Ak’s do not depend on the index i.

So, excluding the constant terms, ⟨H1⟩ becomes for the KG problem [Koukouloyannis & Kevrekidis,
2009]

⟨H1⟩ = −1

2

∞∑
k=1

n−1∑
i=1

A2
k cos(kϕi) (6)
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One of the main features of the MEH approach is that the critical points of this effective Hamiltonian
correspond to the multibreather solutions of the system. This fact provides the corresponding persistence

conditions, as the simple roots of ∂⟨H1⟩
∂ϕi

= 0. Remarkably, in this setting, similarly to what is known also

for the DNLS [Kevrekidis, 2009], it can be proved that the only available multibreather solutions in the
one-dimensional case are the ones with relative phase among the excited sites of 0 or π.

The second important fact the MEH approach yields is that the linear stability of these critical points
(i.e., the Hessian of the effective Hamiltonian) determines the stability of the corresponding multibreather.
In particular, the nonzero characteristic exponents of the central oscillators σi (see the discussion in the

previous subsection) are given as eigenvalues of the stability matrix E = JD2Heff where J =

(
O −I
I O

)
is

the matrix of the symplectic structure. By using the form in (5) for the Heff we get:

E =

(
A B
C D

)
=

(
ϵA1 ϵB1

C0 + ϵC1 ϵD1

)
=


−ϵ

∂2⟨H1⟩
∂ϕi∂Ij

−ϵ
∂2⟨H1⟩
∂ϕi∂ϕj

∂2H0

∂IiIj
+ ϵ

∂2⟨H1⟩
∂Ii∂Ij

ϵ
∂2⟨H1⟩
∂ϕj∂Ii

 . (7)

Since the only permitted values of the relative phases are ϕi = 0, or ϕi = π, the matrix simplifies consid-
erably acquiring the form:

E =

(
O B
C O

)
=

(
O ϵB1

C0 + ϵC1 O

)
. (8)

Then, if we consider only the dominant eigenvalue contributions, we get that σ2
i = ϵχBC , where χBC are

the eigenvalues of the (n− 1× n− 1) matrix B1 ·C0 which reads

B1 ·C0 = −∂ω

∂J
Z = −∂ω

∂J


2f1 −f1 0
−f2 2f2 −f2 0

. . .
. . .

. . .

0 −fn−2 2fn−2 −fn−2

0 −fn−1 2fn−1

 . (9)

In this expression ω = ∂H0/∂J denotes the frequency, while

fi ≡ f(ϕi) =
1

2

∞∑
k=1

k2A2
k cos(kϕi). (10)

This leads to the characteristic exponents (i.e., effective eigenvalues) of the DB in the form:

σ = ±
√

−ϵ
∂ω

∂J
χz, (11)

with χz being the eigenvalues of the (n− 1× n− 1) matrix

Zi,j =

Zi,i±1 = −fi
Zi,i = 2fi
0 otherwise.

(12)

2.3. The AB approach

We demonstrate hereby that (11) can be reobtained based on the AB approach, by using the exposition of
[Archilla et al., 2003]. To this end, we recall that the aim of the AB approach is to look for the displacement
that Aubry’s bands [Aubry, 1997] experience when the coupling ϵ is switched on. What we plan to do below
is to calculate the Floquet eigenvalues assuming that the bands are parabolic and their shape does not
change when the coupling is introduced.
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First, we recall the basics of Aubry’s band theory with the notation used in [Archilla et al., 2003]
adapted to the notation in the present paper, where convenient, for ease of comparison. The Hamilton
equations applied to the Hamiltonian of Eq. (1) can be written as:

ẍn + V ′(xi) + ϵ
∂H1

∂xi
= 0 i = 1, . . . , N , (13)

for a generic coupling potential H1, or, if it is harmonic:

ẍn + V ′(xi) + ϵ
N∑
i=1

Ci jxj = 0 i = 1, . . . , N (14)

where C is a coupling constant matrix. Let us define x ≡ [x1(t), . . . , xN (t)]† († meaning the transpose
matrix). Defining V (x) = [V (x1), . . . , V (xN )]†, ∂H1/∂x = [∂H1/∂x1, . . . , ∂H1/∂xN ]† and so on, Eq. (13)
can be written as:

ẍ + V ′(x) + ϵ
∂H1

∂x
= 0 . (15)

Suppose that x(t) is a time–periodic solution, with period T and frequency ω, its (linear) stability depends
on the characteristic equation for the Newton operator Nϵ given by

Nϵ(u) ξ ≡ ξ̈ + V ′′(x) ∗ ξ + ϵ
∂2H1

∂x2
ξ = E ξ , (16)

where ∗ product is the list product, i.e., f(x) ∗ ξ is the column matrix with elements f(xi(t)) ξi(t), and
∂2H1/∂x

2 is the matrix of functions ∂2H1/∂xi∂xj , which depends on t through x = x(t).
If E = 0, this equation describes the evolution of small perturbations ξ = ξ(t) of x = x(t), which

determines the stability or instability of x. It is however, extremely useful to consider the characteristic
equation for any eigenvalue E as it is the cornerstone for Aubry’s band theory.

Any solution ξ of Eq. (16) is determined by the column matrix of the initial conditions for positions
and momenta Ω(0) = [ξ1(0), . . . ξN (0), π1(0), . . . πN (0)]†, with πi(t) = ξ̇i(t). A basis of solutions is given by
the 2N functions with initial conditions Ων(0), ν = 1, . . . , 2N , with Ων

l (0) = δν l.
The Newton operator depends on the T–periodic solution x(t), and therefore, it is also T -periodic and

its eigenfunctions can be chosen also as eigenfunctions of the operator of translation in time (a period
T ). They are the Bloch functions ξ(θi, t) = χ(θi, t) exp(i θi t/T ), with χ(θ, t) being a column matrix of
T–periodic functions. The sets {ξ(θi, 0), ξ̇(θi, 0)} are also the eigenvectors of the Floquet operator FE or
monodromy, that maps Ω(0) into Ω(T ), that is, Ω(T ) = FEΩ(0). Their corresponding eigenvalues are the
2N multipliers {λi} = exp(θi), with {θi} being the 2N Floquet arguments.

The set of points (θ, E), with θ being a real Floquet argument of FE , has a band structure. As the
Newton and Floquet operators are real, the Floquet multipliers come in complex conjugate pairs. Therefore,
if (θ, E) belongs to a band (i.e. θ is real), (−θ, E) does as well, i.e., the bands are symmetric with respect
to θ, which implies that dE/dθ(0) = 0. There are always two T -periodic solutions, with Floquet multiplier
λ = 1 (θ = 0) for E = 0. One is ẋ(t), which represents a change in phase of the solution x(t) and corresponds
to the phase mode; the other is the growth mode, given by ∂x(t)/∂ω, and represents a change in frequency
and consequently in amplitude. The consequence is that there is always a symmetric band tangent to the
axis E = 0 at θ = 0.

There are at most 2N points for a given value of E and, therefore, there are at most 2N bands crossing
the horizontal axes E = 0 in the space of coordinates (θ,E). The condition for linear stability of x(t) is
equivalent to the existence of 2N bands crossing the axis E = 0 (including tangent points with their
multiplicity). If a parameter like the coupling ϵ changes, the bands evolve continuously, and they can lose
crossing points with E = 0, leading to an instability of the system.

The first item to find out are the bands at the anticontinuous limit, where Eq. (14) reduces to N
identical equations:

ẍi + V ′(xi) = 0 . (17)



March 22, 2011 23:5 equiv14

Multibreather and vortex breather stability in Klein–Gordon lattices: Equivalence between two different approaches 7

If we consider solutions around a minimum of V , the oscillators can be at rest xi = 0, or oscillating
with period T ; the latter are identical except for a change in the initial phase, so they can be written
as xi(t) = g(ωt + wi0) with g(ωt) being the only T -periodic, time-symmetric solution of Eq. (17) with
g(0) > g(π). Therefore, the excited oscillators can be written as:

xi(t) = z0 + 2

∞∑
k=1

zk cos[k(ωt+ wi0)] =

∞∑
k=0

Ak cos[k(ωt+ wi0)] =

∞∑
k=0

Ak cos(kwi) , (18)

with Ak = 2zk if k > 0, A0 = z0 and wi = ωt+ wi0.
Let n be the number of excited oscillators at the anticontinuous limit, labeled i = 0, . . . , n− 1. Then,

there are n identical bands tangent to the axis E = 0 at θ = 0 for each excited oscillator, and N −n bands,
corresponding to the oscillators at rest, with 2(N − n) points intersecting the E = 0 axis.

In what follows we will show that, by making the appropriate assumptions for the excited bands,
we can use the AB method to calculate the characteristic exponents of the multibreather and the results
are equivalent to the MEH method. These assumptions are that the form of the bands is parabolic and
remains that way in the first order of approximation. Thus, the excited bands can be approximated around
(θ, E) = (0, 0) by

E(θ) ≈ E0 + κθ2 , (19)

with E0 = ϵχq and χq being the eigenvalues of the (n× n) Q-matrix defined below. Additionally,

κ =
1

2

∂2E

∂θ2
= − ω2

4π2J

∂H

∂ω
= − 1

T 2J

∂H

∂ω
(20)

where we have made use of [Archilla et al., 2003, Eq. (B14)]. The factor κ is positive if the on-site potential
V is hard and negative if V is soft (a potential is hard if the oscillation amplitude increases with the
frequency and soft otherwise). When the coupling is switched on, the bands will move and change shape;
the E = 0 eigenvalue is degenerate with multiplicity N−n at ϵ = 0, but this degeneracy is generically lifted
for ϵ ̸= 0 and only one band will continue being tangent at (θ, E) = (0, 0) due to the phase mode. Applying
degenerate perturbation theory to Eq. (16), with ϵH1 being the perturbation, a perturbation matrix Q can
be constructed [Archilla et al., 2003], whose eigenvalues χq are those of the perturbed Newton operator.
The non-diagonal elements of Q are given by

Qi j =
1

µi µj

∫ T

0
ẋi

∂2H1

∂xi ∂xj
ẋj d t , i ̸= j, i = 0 . . . n− 1, j = 0 . . . n− 1, (21)

with µi =
√∫ T

0 (ẋi)2dt. The diagonal elements are

Qi i = −
∑
j ̸=i

µj

µi
Qi j . (22)

If the on-site potential V (xi) is homogeneous and the coupling is given as in Eq. (1), as is the case in the
present paper, µi = (2πJ)1/2 ∀i. Let us calculate the derivatives of H1, hi,j = ∂2H1/∂xi ∂xj . Because of
the way the diagonal elements of Q are constructed, we only need the derivatives with i ̸= j. It is easy to
see that they are zero except for hi−1,i = hi,i−1 = −qi (defined below) for i = 1, . . . , n− 1. The derivatives
h0,n−1 and hn−1,0 are also zero as the oscillators at the extremes of the multibreather are not coupled
between them. Then, the matrix Q becomes:

Qi,j =


Qi,i−1 = Qi−1,i = −qi, for i = 1 . . . n− 1
Qi,i = qi−1 + qi, for i = 1 . . . n− 2
Q0,0 = q1
Qn−1,n−1 = qn−1

0 otherwise

(23)

or, explicitly:
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Q =


q1 −q1 0
−q1 q1 + q2 −q2 0

. . .
. . .

. . .

0 −qn−2 qn−2 + qn−1 −qn−1

0 −qn−1 qn−1

 , (24)

with

qi ≡ q(ϕi) =

∫ T
0 ẋi(t)ẋi−1(t) dt∫ T

0 [ẋi(t)]2 dt
=

ω

2J

∑
k≥1

k2A2
k cos(kϕi) =

ω

J
fi, i = 1, . . . n− 1, , (25)

Then, by using [Sandstede, 1998, Lemma 5.4] we see that the matrices Q and
ω

J
Z have the same

nonzero eigenvalues i.e.

χq =
ω

J
χz . (26)

In addition, Q has also a zero eigenvalue 1.
Some important values of q(ϕ) are the following ones:

q(0) = 1 (27)

q(π) =

∑
k≥1(−1)kk2z2k∑

k≥1 k
2z2k

≡ −γ (28)

For a Morse potential, γ = ω; for an even potential, γ = 1, as shown in [Archilla et al., 2003].
According to the AB theory [Aubry, 1997], the Floquet multipliers are given by the cuts of the bands

with the E = 0 axis; thus

θ = ±
√

−E0

κ
=

√
− ϵω

κJ
χz (29)

and, applying the last results

θ = ±T

√
ϵ
∂ω

∂J
χz, (30)

where we have taken into account that 2

∂H

∂ω
=

∂H

∂J

∂J

∂ω
= ω

∂J

∂ω
(31)

Finally, introducing (30) into (2), we get (11), which completes the proof of equivalence of the relevant
Floquet multiplier predictions.

1The fact that the Z matrix does not have a zero eigenvalue is a key point for the MEH method. This method is based in the
continuation from the anticontinuous limit, which means that it makes use of the implicit function theorem. The Z matrix is
directly related to the continuation matrix. So, if Z had a 0 eigenvalue the continuation would fail since the implicit function
theorem would not be valid. This is the the reason we use Heff instead of H.
2The expression ω = ∂H/∂J comes from the Hamilton’s equations for the action-angle variables, since all the calculations are
performed in the uncoupled, and therefore integrable, limit.
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3. Some Examples

In what follows we will illustrate the use of the method in order to acquire stability results by calculating
the characteristic exponents of some prototypical Klein-Gordon lattice configurations. In section 3.1 we
calculate the exponents of a multibreather in a 1D Klein-Gordon chain with a Morse on-site potential.
These results were already known from earlier works (e.g. [Koukouloyannis & Ichtiaroglou, 2006]) for the
2-site and 3-site cases. In the present exposition we generalize these results for the n-site breather case.
In section 3.2 we show that this method can also be used for calculations in higher dimensional lattices.
For this purpose we use a 2D square lattice with Morse on-site potential and focus on the case of vortex-
breathers. Finally, in section 3.3 we show how this method can be used in cases where the analytical
calculations are too cumbersome to handle. In particular, we use a 1D Klein-Gordon chain with hard ϕ4

potential and the rotating wave approximation in order to avoid the complicated calculations.

3.1. The 1D Morse Klein-Gordon chain

We now consider some special case examples, starting with a linearly coupled lattice of oscillators subject
to the Morse potential, V (x) = (exp(−x)− 1)2. As indicated previously, the only configurations that may
exist in the one-dimensional setting are ones which involve excited oscillators either in-phase (i.e., with
ϕi = 0) or out-of-phase (i.e., with ϕi = π); see [Cuevas et al., 2005], [Koukouloyannis & Kevrekidis, 2009]
and also [Cuevas, 2003] for a detailed discussion. Here, we proceed to perform some explicit calculations
for the Floquet multipliers σ in the case of n-site breathers. In what follows we consider only the positive
σ. To this end we express (11) making use of (26):3

σ =

√
−ϵ

J

ω

∂ω

∂J
χq(ϕ) (32)

where χq(ϕ) denotes the Q-matrix eigenvalues for a given ϕ. It is straightforward to show that4

χq(0) = 4 sin2
mπ

2n
m = 1, . . . , n− 1 (33)

and that

χq(π) = −γχq(0) (34)

For instance, in the case of a 2-site breather, χq(0) = 2 and χq(π) = −2γ.
We now focus on the particular case of the Morse potential, since it is a potential for which closed form

analytical expressions can be found. [For other types of potentials, some approximations can be made for
small and high frequencies; alternatively, the required single-oscillator parameters, such as J and ∂ω/∂J
can be calculated numerically].

In the Morse case and in order to evaluate J and ∂ω/∂J , we express J as a function of the Fourier
coefficients:

J = 2ω
∑
k≥1

k2z2k. (35)

For this potential,

z0 = ln
1 + ω

2ω2
; zk =

(−1)k

k
rk/2, r =

1− ω

1 + ω
. (36)

3In what follows, and in order to fix ideas, given the equivalence of the two methods, we will use the formulation with the
Q-matrix.
4We are neglecting the 0 eigenvalue, associated with m = 0.
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Substituting into the action

J = 1− ω → ∂ω

∂J
= −1. (37)

Thus,

σ(ϕ) =

√
ϵ
1− ω

ω
χq(ϕ). (38)

In the case of a general phase, we can express χq(ϕ) = q(ϕ)χq(0) with q(ϕ) given by (25). In the special
case of the Morse potential, we have

q(ϕ) =
2ω

J

∑
k≥1

rk cos(kϕ). (39)

To obtain the relevant sum, we use a simple geometric series formula that can be found e.g. in [Grad-
shteyn & Ryzhik, 1965], according to which:

q(ϕ) =
2ω

J
r

cosϕ− r

1− 2r cosϕ+ r2
. (40)

Consequently,

σ(ϕ) =

√
2ϵr

cosϕ− r

1− 2r cosϕ+ r2
χq(0). (41)

For the relevant values of ϕ for time-reversible multibreathers, we get:

σ(0) =

√
ϵ
1− ω

ω
χq(0) = 2 sin

mπ

2n

√
ϵ
1− ω

ω
m = 1, . . . , n− 1 (42)

σ(π) =
√

−ϵ(1− ω)χq(0) = 2 sin
mπ

2n

√
−ϵ(1− ω) m = 1, . . . , n− 1 (43)

Figures 1 and 2 show, respectively, the analytical eigenvalue predictions (dashed lines) for stable and
unstable two-site and three-site breathers with the Morse potential and how they favorably compare to the
corresponding numerical results (solid lines), obtained via a fully numerical linear stability analysis (and
corresponding computation of the Floquet multipliers). It is clear that the predictions are very accurate
close to the anti-continuum limit, and their validity becomes progressively limited for larger values of
the coupling parameter ϵ, yet they yield a powerful qualitative and even quantitative (in the appropriate
parametric regime) tool for tracking the stability of these localized modes. The figures also illustrate typical
profiles of the corresponding two- and three-site ILMs.

3.2. Vortices in square Morse lattices

The methodology can also be extended to lattices of higher dimensionality. We consider below some basic
properties of discrete vortex breathers of different integer topological charges, in a square 2D lattice. Firstly,
we consider square vortices over a single “plaquette” of the 2D lattice with S = 1, i.e., at the anti-continuum
limit, the excited sites are (0, 0), (0, 1), (1, 1) and (1, 0) with a phase difference ϕ = π/2 between nearest
neighbors. This implies a perturbation matrix given by:
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Fig. 1. (Top panels) Profiles of an in phase (left) and an out-of-phase (right) 2-site breather with the Morse potential for
ω = 0.8 and ϵ = 0.05. The bottom panels show the value of the characteristic exponents σ of the corresponding configurations,
with respect to the coupling parameter ϵ. Dashed lines correspond to the predictions of the stability theorems, while solid ones
to full numerical linear stability analysis results.

Q = q(π/2)Q̃,with Q̃ =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 (44)

with q(π/2) given from (40) which is evaluated as:

q(π/2) = − (1− ω)2

J(1 + ω2)
. (45)

This, in turn, upon use of Eq. (32) implies that

σ = i(1− ω)

√
ϵ

1 + ω2
χ̃q, (46)

where χ̃q are the eigenvalues of the Q̃ matrix. This corresponds to the matrix of the normal modes
of a 1D chain of 4 linearly coupled oscillators with periodic boundary conditions. Let us recall that for a
system of n coupled oscillators, the eigenvalues are given by:
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Fig. 2. Same as in Fig. 1, but now for the unstable left-panel configuration of three in-phase excited sites (with two real
multiplier pairs as shown in the bottom panel) and the case of the out-of-phase, three-site right-panel configuration, which is
stable only in the proximity of to the anti-continuum limit.

χ̃q = 4 sin2
mπ

n
m = 1, . . . , n− 1, (47)

in addition to the 0 eigenvalue. In the present case of 4 oscillators with periodic boundary conditions, the
nonzero eigenvalues are given by 2 and 4, with the former being doubly degenerate. Thus, we have for
S = 1 vortices the following spectrum:

σ =


i(1− ω)

√
2 ϵ
1+ω2 single eigenvalue

2i(1− ω)
√

ϵ
1+ω2 double eigenvalue

(48)

which implies stability for ϵ > 0.
This type of analysis can be generalized for arbitrary values of the vorticity S, leading to the conclusion

that Q̃ is the matrix of 4S coupled oscillators, which implies that vortices with any integer topological
charge will be stable for ϵ > 0 in the case of a lattice with an on-site Morse potential. For instance, in the
case of the S = 2 vortex, we obtain the explicit expressions for the eigenvalues:
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Fig. 3. The characteristic exponents of vortex configurations with S = 1 (left) and S = 2 (right), with respect to ϵ, for the
Morse potential and ω = 0.8. Dashed lines correspond to the theoretical predictions based on Eqs. (48) and (49), respectively;
the full numerical linear stability results are given by solid lines and indicate that all doubly degenerate eigenvalue pairs split
due to higher order contributions in the relevant expansions in the coupling constant ϵ.

σ =



i(1−ω)
2

√
(2− 21/2) ϵ

1+ω2 single eigenvalue

i(1−ω)
2

√
(2 + 21/2) ϵ

1+ω2 double eigenvalue

i(1− ω)
√

2 ϵ
1+ω2 double eigenvalue

2i(1− ω)
√

ϵ
1+ω2 single eigenvalue

(49)

It is important to highlight here some interesting differences between the above results and the case
of the DNLS (and more generally that of even potentials in KG chains, including the case of the hard ϕ4

lattice considered below). In the latter class of problems, the vanishing of the odd coefficients in the Fourier
expansion of the periodic orbit leads to the conclusion that q(π/2) = 0 and hence there is no contribution to
the eigenvalues to leading order. This is the situation which has been characterized as “super-symmetric”
in [Pelinovsky et al., 2005a; Kevrekidis, 2009] and one in which the higher order contributions would be
critical in determining the stability. Nevertheless, in the case considered herein, the asymmetry of the Morse
potential produces a nonvanishing of q(π/2) and offers a corresponding nonzero leading order correction
to the eigenvalues at O(ϵ1/2).

Figure 3 shows the dependence of stability eigenvalues for the S = 1 and S = 2 vortices and their
comparison with the obtained fully numerical linear stability results as a function of the coupling ϵ. As
can be observed in the figures, the approximation is less accurate in this case, although it is qualitatively
correct. The reason for the partial disparity is that higher order contributions to the relevant eigenvalues
(whose calculation is considerably more technically involved) lead to the observed splitting of all the doubly
degenerate eigenvalue pairs. In the relevant cases, the analytical (dashed line) predictions can be seen to
straddle the two observed numerical pairs.

3.3. The 1D hard ϕ4 Klein-Gordon chain

The time evolution of a single oscillator in the hard ϕ4 potential, V (x) = x2/2 + x4/4 is given by:
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x(t) =

√
2m

1− 2m
cn

(
t√

1− 2m
,m

)
=

√
2m

1− 2m
cn

(
2K(m)

π
ωt,m

)
, (50)

where cn is a Jacobi elliptic function of modulus m and K(m) is the complete elliptic integral of the first

kind defined as K(m) =
∫ π/2
0 [1−m sin2 x]−1/2 dx.

The breather frequency ω is related to the modulus m through:

ω =
π

2
√
1− 2mK(m)

. (51)

The elliptic function can be expanded into a Fourier series leading to [Abramowitz & Stegun, 1965]:

z2ν+1 =
π

K(m)

√
2

1− 2m

qν+1/2

1 + q2ν+1
, ν = 0, 1, 2, . . . . (52)

where q is the elliptic Nome which is defined as

q ≡ q(m) = exp(−πK(1−m)/K(m)). (53)

In order to get χq(ϕ) and ∂ω/∂J , we cannot use (10) and (25) because it is not possible to find a closed
form expression. Instead, we use the integral expression:

f(ϕi) =
1

2πω

∫ T

0
ẋi(t)ẋi+1(t) dt. (54)

After some manipulations (where it is crucial to apply [Khare et al., 2003, identity 171]), we obtain:

f(ϕ) =
8K(m)

π3ω(1− 2m)

[
cs(a,m)ns(a,m)[2E(m)−K(m)(1 + dn2(a,m))]

]
− 8K(m)

π3ω(1− 2m)

[
ds(a,m)(cs2(a,m) + ns2(a,m))Z(a,m)

]
(55)

where E(m) is the complete elliptic integral of the second kind defined as E(m) =
∫ π/2
0 [1 −

m sin2 x]1/2 dx, Z(a,m) is the Jacobi zeta function and a = 2K(m)ϕ/π.
For the action J , a similar manipulation leads to

J =
16K(m)

3π2

[
1−m

1− 2m
K(m)− E(m)

]
. (56)

The derivative of this expression is cumbersome to handle. So, in what follows, we will work instead
with numerically obtained values of J and ∂ω/∂J which are relevant for time-reversible multibreathers
and vortex breathers, as for these cases we need f(0), f(π) and f(π/2). As indicated previously, for every
even potential, z2ν+1 = 0, and, consequently, f(0) = J/ω, f(π) = −f(0) and f(π/2) = 0. This leads to:

σ(0) =

√
−ϵ

J

ω

∂ω

∂J
χq(0), (57)

σ(π) =

√
ϵ
J

ω

∂ω

∂J
χq(0). (58)

Figure 4 shows the dependence of J and ∂ω/∂J with respect to the frequency. Figures 5 and 6 illus-
trate subsequently the relevant stability eigenvalues for 2-site and 3-site breathers as obtained from the
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Fig. 4. Dependence with respect to ω of the action (left) and ∂ω/∂J (right) for the hard ϕ4 potential. The dashed line
corresponds to the prediction of the RWA [Eq. (59)], while the solid one represents the exact numerical result.

expressions above and compare them to the full numerical linear stability results. The agreement in this
case is very good (there are no degeneracies and associated higher-order contributions that may deteriorate
the quality of the agreement as in the vortex breather case above); in fact, in some of the cases, the curves
are almost indistinguishable throughout the considered parameter range.

An important observation concerns, however, the role of the “hard” nature of the potential. In particu-
lar, as illustrated in Fig. 4, the quantity ∂ω/∂J is positive in this case, i.e., its sign is opposite from the soft
case of the Morse potential (where ∂ω/∂J = −1). This results in the corresponding reversal of the stability
conclusions in Figs. 5 and 6, in comparison with Figs. 1 and 2 of the Morse case. That is, in-phase modes
are now stable, while out-of-phase ones are unstable (as is true for the defocusing nonlinearity DNLS case
also), while the reverse was true in the Morse potential (as well as for the focusing DNLS case). Lastly, we
recall that since this is an even potential and thus f(π/2) = 0, the leading order calculation would yield a
vanishing contribution to the eigenvalues for the vortex case and a higher-order calculation is necessary to
determine the stability of the latter.

As an aside towards obtaining a fully analytical prediction for this case (as some of the quantities need
to be obtained numerically above), we note the following. Although we cannot acquire an exact form for
J(ω), as in the case of the Morse potential, an approximate form for J can be found by using the rotating
wave approximation (RWA), i.e. by supposing that x(t) ≈ 2z1 cos(ωt). The introduction in the dynamical
equations for the single oscillator leads to:

z1 =

√
ω2 − 1

3
(59)

Thus, J = 2ωz21 = 2ω(ω2 − 1)/3 and ∂ω/∂J = 1/[2(ω2 − 1/3)], and the corresponding expressions for
the eigenvalues read:

σ(0) ≈
√

−ϵ
ω2 − 1

3ω2 − 1
(cosϕ)χq(0) (60)

σ(π) ≈
√

ϵ
ω2 − 1

3ω2 − 1
(cosϕ)χq(0) (61)

A comparison between the numerically acquired values of J(ω) and ∂ω/∂J with the ones calculated
from the RWA is shown in figure 4. The agreement is remarkable and attests to the quality of the “single
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Fig. 5. (Top panels) Profiles of an in-phase (left) and an out-of-phase (right) 2-site breather with the hard ϕ4 potential; ω = 3
and ϵ = 0.05. The bottom panels show the dependence of the characteristic exponents σ, of the corresponding configurations,
on the coupling parameter ϵ. The dashed lines correspond to the predictions of the stability theorems and dash-dotted lines
to the RWA predictions, while the solid ones represent the full numerical result.

frequency” rotating wave approximation. In Figs. 5 and 6 the characteristic exponents calculated numer-
ically (solid lines) as well as using Eqs. (57)-(58) (dashed lines) and via Eqs. (60)-(61) are compared,
illustrating the excellent agreement between all three.

4. Conclusions and Perspectives

The results presented in this work underscore the formulation of a toolbox that enables the systematic
characterization of both the qualitative and even the quantitative aspects of stability

of multibreather and vortex breather waveforms in these large number of degree of freedom, Hamil-
tonian lattice systems of the Klein-Gordon variety. A systematic calculation of the corresponding Floquet
multipliers is presented and highlights the crucial components that imply stability, namely the proper
combination of the sign of the coupling constant, the nature (hard or soft) of the potential and the relative
phases between the adjacent excited sites. E.g., for positive couplings, and soft potentials, out-of-phase
structures may be stable near the vanishing coupling limit, while in-phase ones are always unstable, re-
sembling the corresponding DNLS predictions [Kevrekidis, 2009]; the nature of the conclusions is reversed
for either (small) negative couplings or for hard potentials. The explicit analytical predictions have been
tested against numerical results both for symmetric (such as the hard ϕ4) and asymmetric (such as the
Morse) potentials, both for hard and soft ones, and both for simpler, non-degenerate one-dimensional multi-
breather settings and for more complex and degenerate two-dimensional vortex breathers. In all cases, the
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Fig. 6. Same as Fig. 5, but for the three-site in-phase (left) and out-of-phase (right) configuration. Again the dash-dotted lines
in the bottom panels represent the (fully-analytical) RWA predictions, which agree well with the semi-analytical dependences
(dashed lines) and, in turn, with the full numerical results (solid lines).

two theories whose results were shown to be equivalent herein, namely the Aubry band theory and the
MacKay Effective Hamiltonian method yield excellent qualitative and good quantitative agreement with
the full numerical linear stability results. The accuracy of the predictions is lowered in degenerate cases
where higher order contributions may be critical in breaking the relevant degeneracy (as we saw in the
case of the discrete vortices for the Morse model).

Naturally, a number of interesting directions for future consideration hereby arise. Perhaps the canon-
ical one among them would involve a systematic derivation of higher order corrections for prototypical
cases where the leading order approach yields vanishing results. For instance, the characterization of the
stability of discrete vortices in the “super-symmetric” case of phase difference ϕ = π/2 for even potentials
would be a natural example. Another possibility that is also emerging and would be relevant to consider
from a mathematical point of view would be to examine models with inter-site nonlinearities, such as
ones of the Fermi-Pasta-Ulam type. In these cases, where the potential is a function V (xn − xn−1), it is
relevant to point out that upon consideration of the so-called strain variables rn = xn−xn−1, the problem
is reverted to an on-site potential case, for which it would be worthwhile to explore methods similar to
the ones analyzed herein. These directions are presently under consideration and will be reported in future
publications.
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